References
- Alon, U., Barkai, N., Notterman, D. A., Gish, K., Ybarra. S., Mack, D. and Levine, A. J. (1999). Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays, Proceedings of the National Academy of Sciences of the United States of America, 96, 6745-6750
- Dudoit, S., Fridlyand, J. and Speed, T. (2002). Comparison of discrimination methods for the classification of tumors using gene expression data, Journal of the American Statistical Association, 97, 77-87 https://doi.org/10.1198/016214502753479248
- Furey, T. S., Cristianini, N., Duffy, N., Bednarski, D. W., Schummer, M. and Haussler, D. (2000). Support vector machine classification and validation of cancer tissue samples using microarray expression data, Bioinformatics, 16, 906-914 https://doi.org/10.1093/bioinformatics/16.10.906
- Golub, T. R., Slonim, D. K., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J. P., Coller, H., Loh M. L., Downing, J. R., Caligiuri, M. A., Bloomfield C. D. and Lander, E. S. (1999). Molecular classification of cancer: class discovery and class prediction by gene expression monitoring, Science, 286, 531-537 https://doi.org/10.1126/science.286.5439.531
- Guyon, I., Weston, J., Barnhill, S. and Vapnik, V. (2002). Gene selection for cancer classification using support vector machines, Machine Learning, 46, 389-422 https://doi.org/10.1023/A:1012487302797
- Khan, J., Wei, J. S., Ringner, M., Saal, L. H., Ladanyi, M., Westermann, F., Berthold, F., Schwab, M., Antonescu, C. R., Peterson, C. and Meltzer, P. S. (2001). Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks, Nature Medicine, 7, 673-679 https://doi.org/10.1038/89044
- Kohavi, R. and John, G. (1997). Wrappers for feature subset selection, Artificial Intelligence, 97, 273-324 https://doi.org/10.1016/S0004-3702(97)00043-X
- Koutsoukos, A. D., Rubinstein, L. V., Faraggi, D., Simon, R. M., Kalyandrug, S., Weinstein, J. N., Kohn, K. W. and Paull, K. D. (1994). Discrimination techniques applied to the NCI in vitro anti-tumour drug screen: predicting biochemical mechanism of action, Statistics in Medicine, 13, 719-730 https://doi.org/10.1002/sim.4780130532
- LeCun, Y., Denker, J. S. and Solla, S. A. (1990). Optimum brain damage, Advances in neural information processing systems, 2, 598-605
- Pavlidis, P., Weston, J., Cai, J. and Grundy, W. N. (2001). Gene functional classification from heterogeneous data, Annual Conference on Research in Computational Molecular Biology Proceedings of the fifth annual international conference on Computational biology
- Philip, M. L. and Vinsensius, B. V. (2003). Boosting and microarray data, Machine Learning, 52, 31-44 https://doi.org/10.1023/A:1023937123600
- Vapnik, V. N. (1998). Statistical Learning Theory, John Wiley & Sons, New York