DOI QR코드

DOI QR Code

A Study on the Prediction of Traffic Counts Based on Shortest Travel Path

최단경로 기반 교통량 공간 예측에 관한 연구

  • 허태영 (한국해양대학교 나노데이터시스템학부 데이터정보) ;
  • 박만식 (고려대학교 의과학연구원 유전체및단백체환경독성센터) ;
  • 엄진기 (한국철도기술연구원 철도정책물류연구본부) ;
  • 오주삼 (한국철도기술연구원 첨단도로교통연구실)
  • Published : 2007.11.30

Abstract

In this paper, we suggest a spatial regression model to predict AADT. Although Euclidian distances between one monitoring site and its neighboring sites were usually used in the many analysis, we consider the shortest travel path between monitoring sites to predict AADT for unmonitoring site using spatial regression model. We used universal Kriging method for prediction and found that the overall predictive capability of the spatial regression model based on shortest travel path is better than that of the model based on multiple regression by cross validation.

본 연구에서는 연평균일교통량 예측을 위한 공간회귀모형을 제시하였다. 비록 공간 분석을 위하여 조사지점들 간의 유클리디안 거리가 일반적으로 사용되고 있지만, 조사되지 않는 도로의 교통량 예측을 위하여 교통량 조사지점들 간의 최단경로를 이용한 공간회귀모형을 새롭게 시도하였다. 공간예측방법으로는 일반크리깅을 사용하였으며 교차검증을 통하여 정량적으로 최단경로 기반의 교통량공간예측모형의 타당성을 제시하였다.

Keywords

References

  1. 김선우, 정애란, 이성덕 (2005). 공간자료를 이용한 세미베리오그램 추정, <응용통계연구>, 18, 271-280 https://doi.org/10.5351/KJAS.2005.18.2.271
  2. 유성모, 엄익현 (1999). 강우강도 데이터를 이용한 세미베리오그램의 추정과 공간이상치에 관한 연구, <응용통계연구>, 12, 125-141
  3. 오주삼, 조윤호, 변상철 (2002). 연 평균 일교통량 추정 방법론에 관한 연구, <대한토목학회논문집>, 22, 59-69
  4. 조재영, 최승배, 김규곤 (2001). 일반통계에 대한 공간통계 방법의 예측성능에 관한 연구, Journal of the Korean Data Analysis Society, 3, 41-49
  5. Cheng, C. (1992). Optimum Sampling for Traffic Volume Estimation, Ph.D. Dissertation, University of Minnesota, Carlson School of Management, Minnesota
  6. Cressie, N. A. C. (1993). Statistics for Spatial Data, John Wiley & Sons, New York
  7. Eom, J. K., Park, M. S., Heo, T. Y. and Huntsunger, L. F. (2006). Improved prediction of annual average daily traffic for non-freeway facilities by applying spatial statistical method, Proceedings of the 85th Annual Meeting of the Transportation Research Board, Washington DC, and under consideration for publication in Transport Policy
  8. Goovaerts, P. (1997). Geostatistics for Natural Resources Evaluation, Oxford University Press, New York
  9. Heo, T-Y. and Hughes-Oliver, J. (2005). A Spatial Editing and Validation Process for Short-Count Traffic Data, Technical report, North Carolina State University
  10. Isaaks, E. H. and Srivastava, R. M. (1989). An Introduction to Applied Geostatistics, Oxford University Press, New York
  11. Journel, A. G. and Huijbregts, C. J. (1978). Mining Geostatistics, Academic Press, New York
  12. Kitanidis, P. K. (1997). Introduction to Geostatistics: Applications in Hydrogeology, Cambridge University Press, New York
  13. Lam, W. H. and Xu, J. (2000). Estimation of AADT from short period counts in Hong Kong: a comparison between neural network method and regression analysis, Journal of Advanced Transportation, 34, 249-268 https://doi.org/10.1002/atr.5670340205
  14. Matheron, G. (1963). Principles of geostatistics, Economic Geology, 58, 1246-1266 https://doi.org/10.2113/gsecongeo.58.8.1246
  15. Rathbun, S. L. (1998). Spatial modelling in irregularly shaped regions: Kriging estuaries, Environmetrics, 9, 109-129 https://doi.org/10.1002/(SICI)1099-095X(199803/04)9:2<109::AID-ENV279>3.0.CO;2-L
  16. Tang, Y. F., Lam, W. H. K. and Pan, L. P. (2003). Comparison of four modeling techniques for short-term AADT forecasting in Hong Kong, Journal of Transportation Engineering, 129, 271-277 https://doi.org/10.1061/(ASCE)0733-947X(2003)129:3(271)
  17. Xia, Q., Zhao, F., Chen, Z., Shen, L. D. and Ospina, D. (1999). Development of a Regression Model for Estimating AADT in a Florida County, In Transportation Research Record 1660, Transportation Research Board, National Research Council, Washington, D.C
  18. Zhao, F. and Chung, S. (2001). Estimation of Annual Daily Traffic in a Florida County Using GIS and Regression, Transportation Research Board, 80th annual meeting, Washington, D.C

Cited by

  1. A Study on Performance Evaluation of Various Kriging Models for Estimating AADT vol.32, pp.4, 2014, https://doi.org/10.7470/jkst.2014.32.4.380
  2. A Study on Spatial Prediction of Water Quality Constituents Using Spatial Model vol.30, pp.4, 2014, https://doi.org/10.15681/KSWE.2014.30.4.409
  3. On the Hierarchical Modeling of Spatial Measurements from Different Station Networks vol.26, pp.1, 2013, https://doi.org/10.5351/KJAS.2013.26.1.093
  4. A Study on the Queueing Process with Dynamic Structure for Speed-Flow-Density Diagram vol.23, pp.6, 2010, https://doi.org/10.5351/KJAS.2010.23.6.1179