References
- J. P. Borice and D. L.Book, Flux corrected transport I, SHASTA, A fluid fransport flgorithm that works, J. Comput. Phys. 11 (1973), 38-69 https://doi.org/10.1016/0021-9991(73)90147-2
- J. Gressier, P. Villedieu, and J.M. Moschetta, Positivity of flux vector splitting schemes, J. Comput. Phys. 155 (1999), 199-220 https://doi.org/10.1006/jcph.1999.6337
- Y. Ha, C. L. Gardner, A. Gelb, and C-W. Shu, Numerical Simulation of High Mach Number Astrophysical Jets with Radiative Cooling J. Sci. Comput. 24 (2005), 29-44 https://doi.org/10.1007/s10915-004-4786-4
- Y. Ha and Y. J. Kim, Explicit solutions to a convection-reaction equation and defects of numerical schemes, J. Comput. Phys. 220 (2006), 511-531 https://doi.org/10.1016/j.jcp.2006.07.018
- A. Harten, P.D. Lax, and B. van Leer, On upstream differencing and Godunov-type schemes for hyperbolic conservation laws, SIAM Rev. 25 (1983), no. 1, 35-61 https://doi.org/10.1137/1025002
- A. Harten, On a Class of High Resolution Total- Variation-Stable Finite-Difference Schemes, SIAM J. Numer. Anal. 21 (1984), no. 1, 1-23 https://doi.org/10.1137/0721001
- A. Harten and G. Zwas, Self-Adjusting Hybrid Schemes for Shock Computations, J. Comput. Phys. 9 (1972) 568-583 https://doi.org/10.1016/0021-9991(72)90012-5
- J. J. Hester, K. R. Stapelfeldt, and J. A. Scowen, Hubble space telescope wide field planetary camera 2 observations of HH 1-2, Astrophysical Journal 116 (1998), 372-395 https://doi.org/10.1086/300396
- G-S. Jiang and C-C. Wu, A High-Order WENO Finite Difference Scheme for the Equations of Ideal Magnetohydrodynamics, J. Comput. Phys, 150 (1999), 561-594 https://doi.org/10.1006/jcph.1999.6207
- G-S. Jiang and C-W. Shu, Efficient Implementation of Weighted ENO schemes, J. Comput. Phys. 126 (1996), 202-228 https://doi.org/10.1006/jcph.1996.0130
- P. D. Lax and X.-D. Liu, Solution of Two-Dimensional Riemann Problems of Gas Dynamics by Positive Schemes, SIAM J.Sci.Comput. 19 (1998), no. 2, 319-340 https://doi.org/10.1137/S1064827595291819
- P. D. Lax and B. Wendroff, Systems of conservation laws, Commun. Pure Appl. Math. 13 (1960), 217-237 https://doi.org/10.1002/cpa.3160130205
- R. Liska and B. Wendroff, Comparison of Serveral Difference Schemes on 1D and 2D Test Problems for the Euler Equations, SIAM J. Sci. Comput. 25 (2003), no. 3, 995-1017 https://doi.org/10.1137/S1064827502402120
- X.-D. LID and P. D. LAX, Positive Schemes for Solving Multi-dimensional Hyperbolic Systems of Conservation Laws, J. Comp. Fluid Dynam. 5 (1996) 133-156
- R. J. LeVeque, Numerical Methods for Conservation Laws, Birkhauser Verlag, Basel (1992)
- P. L. Roe, Approximate Riemann solvers, paremeter vectors, and difference schemes, J. Comp. Phys. 43 (1981), 357-372 https://doi.org/10.1016/0021-9991(81)90128-5
- T. Schmutzler and W. M. Tscharnuter, Effective radiative cooling in optically thin plasmas, Astronomy and Astrophysics 273 (1993), 318-330
- C.-W. Shu, Total-variation-diminshing time discretizations, SIAM J. Sci. Statist. Comput. 9 (1988), 1073-1084 https://doi.org/10.1137/0909073
- C.- W. Shu and S. Osher, Efficient implementation of essentially non-oscillatory shock capturing schemes, II, J. Comput. Phys. 83 (1989), 32-78 https://doi.org/10.1016/0021-9991(89)90222-2
- P. K. Sweby, High resolution schemes using flux limiters hyperbolic conservation laws, SIAM J.Numer. Anal. 21 (1984), no. 5, 995-1011 https://doi.org/10.1137/0721062
- E. F. Taro, Riemann Solvers and Numerical Methods for Fluid Dynamics, SpringerVerlag, New York, 1997