DOI QR코드

DOI QR Code

PARTS FORMULAS INVOLVING INTEGRAL TRANSFORMS ON FUNCTION SPACE

  • Published : 2007.10.31

Abstract

In this paper we establish several integration by parts formulas involving integral transforms of functionals of the form $F(y)=f(<{\theta}_1,\;y>),\ldots,<{\theta}_n,\;y>)$ for s-a.e. $y{\in}C_0[0,\;T]$, where $<{\theta},\;y>$ denotes the Riemann-Stieltjes integral ${\int}_0^T{\theta}(t)\;dy(t)$.

Keywords

References

  1. R. H. Cameron, The first variation of an indefinite Wiener integral, Proc. Amer. Math. Soc. 2 (1951), 914-924 https://doi.org/10.2307/2031708
  2. R. H. Cameron and W. T. Martin, Fourier- Wiener transforms of analytic functionals, Duke Math. J.12 (1945), 489-507 https://doi.org/10.1215/S0012-7094-45-01244-0
  3. R. H. Cameron and D. A. Storvick, An $L_{2}$ analytic Fourier-Feynman transform, Michigan Math. J. 23 (1976), 1-30 https://doi.org/10.1307/mmj/1029001617
  4. R. H. Cameron and D. A. Storvick, Feynman integral of variations of functionals, Gaussian Random Fields (Nagoya, 1990), Ser. Probab. Statist. 1, World Sci. Publ. 1991, 144-157
  5. K. S. Chang, B. S. Kim, and I. Yoo, Integral transform and convolution of analytic functionals on abstract Wiener spaces, Numer. Funet. Anal. Optim. 21 (2000), 97-105 https://doi.org/10.1080/01630560008816942
  6. T. Huffman, C. Park, and D. Skoug, Analytic Fourier-Feynman transforms and convolution, Trans. Amer. Math. Soc. 347 (1995), 661-673 https://doi.org/10.2307/2154908
  7. B. J. Kim, B. S. Kim, and D. Skoug, Integral transforms, convolution products, and first variations, Internat. J. Math. Math. Sci. 2004 (2004), 579-598 https://doi.org/10.1155/S0161171204305260
  8. B. S. Kim and D. Skoug, Integral transforms of functionals in $L_{2}$($C_{0}$[0, T]), Rocky Mountain J. Math. 33 (2003), 1379-1393 https://doi.org/10.1216/rmjm/1181075469
  9. Y. J. Lee, Integral transforms of analytic functions on abstract Wiener spaces, J. Funct. Anal. 47 (1982), 153-164 https://doi.org/10.1016/0022-1236(82)90103-3
  10. C. Park and D. Skoug, Integration by parts formulas involving analytic Feynman integrals, PanAmer. Math. J. 8 (1998),1-11
  11. C. Park, D. Skoug, and D. Storvick, Relationships among the first variation, the convolution product, and the Fourier- Feynman transform, Rocky Mountain J. Math. 28 (1998), 1447-1468 https://doi.org/10.1216/rmjm/1181071725
  12. D. Skoug and D. Storvick, A survey of results involving transforms and convolutions in function space, Rocky Mountain J. Math. 34 (2004),1147-1176 https://doi.org/10.1216/rmjm/1181069848
  13. J. Yeh, Convolution in Fourier- Wiener transform, Pacific J. Math. 15 (1965), 731-738 https://doi.org/10.2140/pjm.1965.15.731
  14. I. Yoo, Convolution and the Fourier- Wiener transform on abstract Wiener space, Rocky Mountain J. Math. 25 (1995), 1577-1587 https://doi.org/10.1216/rmjm/1181072163

Cited by

  1. PARTS FORMULAS INVOLVING CONDITIONAL INTEGRAL TRANSFORMS ON FUNCTION SPACE vol.22, pp.1, 2014, https://doi.org/10.11568/kjm.2014.22.1.57