Journal of Internet Computing and Services (인터넷정보학회논문지)
- Volume 8 Issue 5
- /
- Pages.81-89
- /
- 2007
- /
- 1598-0170(pISSN)
- /
- 2287-1136(eISSN)
Ontology based Context-Aware Recommendation System using Concept Hierarchy
개념 계층 모델을 이용한 온톨로지 기반 상황 인식 추천 시스템
- Published : 2007.10.31
Abstract
In this thesis, we propose ontology based context-aware recommendation system using concept hierarchy(OCARCH), Context-aware recommendation services are useful to provide an user with relevant information and/or services bared on his current context, However several approaches to context-aware recommendation system have been already proposed, each of them provide information without considering level of information concept bared on his current context, For this reason, we propose OCARCH as system capable of helping people to find their way quickly and easily through large amounts of information by determining level of information concept based on his current context, We are also using prefetching algorithm to store recommendation information that the user is likely to need in the near future based on current predictions, Therefore the OCARCH enables users to obtain relevant information efficiently, Several experiments are performed and the experimental results show that the proposed system provides more effective than conventional context-aware recommendation system.
유비쿼터스 기술의 성장으로 사용자의 상황을 자동으로 인지하여 유용한 서비스를 제공해주는 상황 인식 추천 서비스가 요구되기 시작하였다. 그러나 기존의 상황 인식 추천 서비스는 상황에 따른 추천 정보를 개념 수준의 변화 없이 일관된 개념 수준의 정보만을 제공하였다. 그러므로 추천된 정보가 사용자의 현재 상황에서 처리하기 어려운 수준의 정보로 제공되어 사용자가 원하는 정보를 찾고 목적을 달성하기 위해서는 상당한 노력과 시간을 소요하게 되었다. 본 논문에서는 온톨로지의 개념 계층 모델을 이용하여 사용자의 상황에 맞는 정보의 수준을 결정하고 정보를 추천하는 상황 인식 추천 시스템(OCARCH)을 제안한다. 그리고 기존의 상황 인식 추천 서비스와의 비교 실험을 통해 본 논문에서 제시한 개념 계층 모델을 이용한 상황 인식 추천 시스템이 더 뛰어난 성능을 보임을 증명한다.