Photocurrent study on the splitting of the valence band and growth of $CdGa_2Se_4$ single crystal thin film by hot wall epitaxy

Hot Wall epitaxy(HWE)법에 의한 $CdGa_2Se_4$ 단결정 박막의 성장과 가전자대 갈라짐에 대한 광전류 연구

  • Published : 2007.10.31

Abstract

Single crystal $CdGa_2Se_4$ layers were grown on a thoroughly etched semi-insulating GaAs(100) substrate at $420^{\circ}C$ with the hot wall epitaxy(HWE) system by evaporating the polycrystal source of $CdGa_2Se_4$ at $630^{\circ}C$. The crystalline structure of the single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction(DCXD). The carrier density and mobility of single crystal $CdGa_2Se_4$ thin films measured with Hall effect by van der Pauw method are $8.27{\times}10^{17}cm^{-3},\;345cm^2/V{\cdot}s$ at 293 K, respectively. The photocurrent and the absorption spectra of $CdGa_2Se_4/SI$(Semi-Insulated) GaAs(100) are measured ranging from 293 K to 10 K. The temperature dependence of the energy band gap of the $CdGa_2Se_4$ obtained from the absorption spectra was well described by the Varshni's relation $E_g(T)=2.6400eV-(7.721{\times}10^{-4}eV/K)T^2/(T+399K)$. Using the photocurrent spectra and the Hopfield quasicubic model, the crystal field energy(${\Delta}cr$) and the spin-orbit splitting energy(${\Delta}so$) far the valence band of the $CdGa_2Se_4$ have been estimated to be 106.5 meV and 418.9 meV at 10 K, respectively. The three photocurrent peaks observed at 10 K are ascribed to the $A_{1^-},\;B_{1^-},\;and\;C_{11}-exciton$ peaks.

[ $CdGa_2Se_4$ ] 단결정 박막을 수평 전기로에서 합성한 $CdGa_2Se_4$ 다결정을 증발원으로하여, hot wall epitaxy(HWE) 방법으로 증발원과 기판(반절연성-GaAs(100))의 온도를 각각 $630^{\circ}C,\;420^{\circ}C$로 고정하여 성장하였다. 이때 단결정 박막의 결정성은 광발광 스펙트럼과 이중결정 X-선 요동곡선(DCRC)으로 부터 구하였다. Hall 효과는 van der Pauw 방법에 의해 측정되었으며, 293K에서 운반자 농도와 이동도는 각각 $8.27{\times}10^{17}cm^{-3},\;345cm^2/V{\cdot}s$였다. $CdGa_2Se_4/SI$(Semi-Insulated) GaAs(100) 단결정 박막의 광흡수와 광전류 spectra를 293K에서 10K까지 측정하였다. 광흡수 스펙트럼으로부터 band gap $E_g(T)$는 Varshni 공식에 따라 계산한 결과 $E_g(T)=2.6400eV-(7.721{\times}10^{-4}eV/K)T^2/(T+399K)$였다. 광전류 스펙트럼으로부터 Hamilton matrix(Hopfield quasicubic mode)법으로 계산한 결과 crystal field splitting 에너지 ${\Delta}cr$값이 106.5meV이며 spinorbit 에너지 ${\Delta}so$값은 418.9meV임을 확인하였다. 10K일 때 광전류 세 봉우리들은 $A_{1^-},\;B_{1^-}$$C_{11}-exciton$ 봉우리임을 알았다.

Keywords

References

  1. G.B. Abdullav, VG. Agaer and E.Yu. Salaer, 'Photoconductivity, trapping, and recombination in CdGa2Se4 Single crystals' Soviet, Physics-Semiconductors 6(9) (1973) 1492
  2. S.1. Radautsan, VF. lhitar and M.1. Shmiglyuk, 'Hetero-junction formation in (CdZn)S/CdGa2Se4 ternary solar cells', Soviet, Physics-Semiconductors 5(11) (1972) 1959
  3. Pokivits and M. Wijnakkev, 'Photoluminescience and phoconductivity measurements on CdGa2Se4', J. Phys. C: Solid State Phys. 11 (1978) 236l https://doi.org/10.1088/0022-3719/11/11/026
  4. SJ. Kshirsagar and A. Sinba, 'Optical absorptim, electrical conductivity and spectral response measurements on the system CdGa2Sell - x)', J. Matericals Science 12 (1977) 1614 https://doi.org/10.1007/BF00542812
  5. P. Lottice and C. Razzetti, 'On the lattice dynamics of some detective gallium ternary compound', J. Phys. C:Solid State Phys. 16 (1983) 3449 https://doi.org/10.1088/0022-3719/16/18/014
  6. G.B. Abdullaev and EYu. Salay, 'Optical absorption of ${CdGa_2Se_4}$ single cyrstals', Soviet, Physics-Semiconductors 5(11) (1972) 1854
  7. I. Shih, C.H. Champness and A. Vahid Shahihi, 'Growth by directional freezing of ${CdGa_2Se_4}$ and diffused homojunctionsin bulk material', Solar Cells. 16 (1984) 27 https://doi.org/10.1016/0379-6787(86)90073-6
  8. David Cahen, PJ. Ireland, L.L. Kazmerski and FA Thiel, 'X-ray photoelectronand Auger electron spectroscopic analysis of surface treatments and electrochemical decomposition of CdGa2Se4 photoelectrodes', J. Appl, Phys. 57(2) (1985) 476l https://doi.org/10.1063/1.335341
  9. KJ. Hong and TS. Jeong, 'The optical properties of CdS crystal grown by the sublimation method', Journal of Crystal Growth 218 (2000) 19 https://doi.org/10.1016/S0022-0248(00)00491-7
  10. W. Horig and H. Sobotta, 'The optical properties of CdGaZ'Se4 thin films', Thin 'Solid Films 48 (1978) 67 https://doi.org/10.1016/0040-6090(78)90332-2
  11. KJ. Hong and TS. Jeong, 'The characterization of ZnSe/GaAs epilayers grown by hot wall epitaxy', Journal of Crystal Growth 172 (1997) 89 https://doi.org/10.1016/S0022-0248(96)00725-7
  12. B.D. Cullity, 'Elements of X-ray diffractions' (AddsonWesley. 1985) chap. 11
  13. H. Hahn, G. Frank and G. Storger, 'Crystal Structrue and two-phonon absorption in CdGa2Se4', Allg. Chern. 279 (1955) 241 https://doi.org/10.1002/zaac.19552790502
  14. E.A. Wood, 'Crystal orientation manual' (Columbia university press, 1963)
  15. H. Fujita, 'Electron raditiondamage in Cadium-Selenide crystal at liquid-helium temperrature', J. Phys. Soc. Jpn. 20 (1965) 109 https://doi.org/10.1143/JPSJ.20.109
  16. Y.P. Varshni, Physica 34 (1967) 149 https://doi.org/10.1016/0031-8914(67)90062-6
  17. J.L. Shay and J.H. Wernick, 'Ternary chalcopyrite semiconductor : electronic properties, and applications' (pergamon,1975) chap. 4
  18. B.R. Trykozko and A. Borghesi, 'Optical absorption and energy band structure of CdGa2Se4', Phys., Letts. 75A (1979) 121
  19. B. Segall and D.TF. Marple, in : M. Aven and J.S. Prenerin (Eds.), Physics and Chemistry of II-VI Compounds, North-Holland, Amsterdam (1967) 340