Abstract
The release, sampling and analytical methods have been developed and tested for perfluorocarbons (PFCs) atmospheric tracers in order to gain insight into the atmospheric transport and dispersion over the urban conditions of Seoul, Korea. Although PFCs tracer experiments provide unique opportunities to test local and urban scale of transport and dispersion, no previous experiment with PFCs has been conducted in Korea. PMCH and PDCH were chosen as targeted tracers in our study due to their extreme low ambient concentrations and great sensitivities among various PFCs. For PFCs release system, a set of micro-metering pump, electronic balance, vaporizing furnace and high speed blower was constructed for precise and accurate release of tracers. The precision of released rate by this system was estimated to be 1%. Samplings of PFCs were carried out by fabricated portable air samplers with micro pumps and rotameters into glass tubes packed with 150 mg of Carboxen-569. The uncertainty of these sampling system was maintained below 14%. PMCH and PDCH were quantified in GC/ECD with preconditioned injection system to eliminate the interference compounds using traps and subsequent catalytic conversion system prior to column separation. Three intensive field test were undertaken during the springtime of 2002 to 2004 in eastern part of Seoul. Daily background samples were collected to characterize the background levels of PMCH and PDCH prior to their release. The observed background concentrations of PMCH ranged from 3.5 to 10.1 fL/L and varied randomly in location and time in this study. Its mean and standard variation of background concentration ($6.8{\pm}1.9\;fL/L$) are higher than those ($3.2{\sim}5.8\;fL/L$) of other historic tracer studies. Identified uncertainty for background PMCH was $1.7{\sim}2.0\;fL/L$ using this analytical system. Combined relative uncertainty in determining the tracer's concentrations was estimated as 17%. However, its background concentrations and uncertainty in concentration determination were found to be low and stable enough for tracer study.