DOI QR코드

DOI QR Code

Absorption and Regeneration of Carbon Dioxide in Aqueous AMP + AEPD and AMP + TIPA Solutions

AMP + AEPD와 AMP + TIPA 수용액을 이용한 이산화탄소의 흡수 및 재생

  • Kim, Mi-Sook (Department of Environmental Engineering, Pusan National University) ;
  • Choi, Won-Joon (Department of Environmental Engineering, Pusan National University) ;
  • Seo, Jong-Beom (Department of Environmental Engineering, Pusan National University) ;
  • Cho, Ki-Chul (Department of Environmental Engineering, Pusan National University) ;
  • Kim, Soo-Gon (Division of Remediation Technology, QEN Solution) ;
  • Oh, Kwang-Joong (Department of Environmental Engineering, Pusan National University)
  • Published : 2007.10.31

Abstract

Increasing emission of $CO_2$ significantly effects the global warming. Chemical absorption is one of separation methods of $CO_2$ from the industrial flue gases. In this study, the $CO_2$ removal efficiency as well as the $CO_2$ absorption amount of aqueous AMP (2-amino-2-methyl-1-propanol) solutions were measured using the continuous absorption and regeneration apparatus. We investigated the effect of aqueous AMP+AEPD(2-amino-2-ethyl-1, 3-propanediol) and AMP+TIPA (triisopropanolamine) solutions to enhance absorption characteristics of AMP. As a result of this study, the absorption amount and $CO_2$ removal efficiency were increased with adding TIPA into 30 wt.% AMP. The absorption amount and $CO_2$ removal efficiency of aqueous 30 wt.% AMP+5 wt.% TIPA solution were $1.70\;kg-CO_2/kg-absorbent$ and 91.1%, while those of aqueous 30 wt.% AMP solution were $1.58\;kg-CO_2/kg-absorbent$ and 89.3%. In addition, aqueous 30 wt.% AMP+5 wt.% TIPA solution used in the study revealed the high stripping efficiency, which was almost 98%, at the temperature of $110^{\circ}C$. Thus, the temperature of regenerator should be operated at $110^{\circ}C$.

Keywords

References

  1. 심재구, 김준한, 장경룡, 엄희문(2003) Pilot Plant를 이용한 화력발전소 배기가스 중 $CO_2$와 MEA의 흡수특성, 대한환경공학회지, 25(12), 1557-1563
  2. 엄희문(2003) 화력발전소에서 $CO_2$의 분리회수 및 전환기술의 Demo Plant 적용연구, 산업자원부, 41 pp
  3. 조승헌, 김석철, Dellink Rob, 장현정, 전해원(2003) 기후변화 영향분석모델: 환경편익을 고려한 온실가스 저감에 따른 경제성 분석, 한국환경정책.평가연구원, 134 pp
  4. 최원준, 이재정, 정종현, 유정석, 문길호, 오광중(2004) 첨가제에 따른 혼합흡수제를 이용한 $CO_2/H_2S$의 흡수 및 재생, 대한환경공학회지, 26(5), 536-542
  5. 최원준, 조기철, 오광중(2005) 흡수/재생 연속공정에서 AMP+HMDA를 이용한 이산화탄소의 제거, 한국대기환경학회지, 21(5), 507-513
  6. CDRS (2005) 더워지는 지구 그 원인과 대책, 이산화탄소저감 및 처리기술개발사업단
  7. Chauhan, R.K., S.J. Yoon, H. Lee, J.H. Yoon, J.G. Shim, G.C. Song, and H.M. Eum (2003) Solubilities of carbon dioxide in aqueous solutions of triisopropanolamine, Fluid Phase Equilibria, 208, 239-245 https://doi.org/10.1016/S0378-3812(03)00059-1
  8. Daneshvar, N., M.T. Zaafarani Moattar, M. Abedinzadegan Abdi, and S. Aber (2004) Carbon dioxide equilibrium absorption in the multi-component systems of $CO_2+TIPA+MEA+H_2O,\;CO_2+TIPA+Pz+H_2O\;and\;CO_2+TIPA+H_2O$ at low $CO_2$ partial pressures: experimental solubility data, corrosion study and modeling with artificial neural network, Separation and Purification Technology, 37, 135-147 https://doi.org/10.1016/j.seppur.2003.09.004
  9. Mandal, B.P., M. Kundu, N.U. Padhiyar, and S.S. Bandyopadhyay (2004) Physical solubility and diffusivity of $N_2O\;and\;CO_2$ into aqueous solutions of (2-amino-2-methyl-1-propanol+diethanolamine) and (Nmethyldiethanolamine+diethanolamine), J. Chem. Eng. Data, 49, 264-270 https://doi.org/10.1021/je0301951
  10. Park, J.Y., S.J. Yoon, H. Lee, J.H. Yoon, J.G. Shim, J.K. Lee, B.Y. Min, H.M. Eum, and M.C. Kang (2002) Solubility of carbon dioxide in aqueous solutions of 2-amino-2-ethyl-1, 3-propanediol, Fluid Phase Equilibria, 202, 359-366 https://doi.org/10.1016/S0378-3812(02)00142-5
  11. Rebolledo-Libreros, M.E. and A. Trejo (2004) Gas solubility of $CO_2$ in aqueous solutions of N-methyldiethanolamine and diethanolamine with 2-amino-2-methyl-1-propanol, Fluid Phase Equilibria, 218, 261-267 https://doi.org/10.1016/j.fluid.2003.12.012
  12. Saha, A.K. and S.S. Bandyopadhyay (1995) Kinetics of absorption of $CO_2$ into aqueous solutions of 2-amino-2-mehtyl-1-propanol, Chem. Eng. Sci., 50(22), 3587-3598 https://doi.org/10.1016/0009-2509(95)00187-A
  13. Sun, W.C., C.B. Yong, and M.H. Li (2005) Kinetics of the absorption carbon dioxide into mixed aqueous solutions of 2-amino-2-methyl-1-propanol and piperazine, Chem. Eng. Sci., 60, 503-516 https://doi.org/10.1016/j.ces.2004.08.012
  14. UNFCC (1997) Kyoto protocol to the United Nations Framework Convention on Climate Change, FCCC/CP/1997/L.7/Add.1, Bonn
  15. Xiao, J., C.W. Li, and M.H. Li (2000) Kinetics of absorption of carbon dioxide into aqueous solutions of 2-amino-2-methyl-1-propanol+monoethanolamine, Chem. Eng. Sci., 55, 161-175 https://doi.org/10.1016/S0009-2509(99)00303-6
  16. Xu, S., Y.W. Wang, F.D. Otto, and A.E. Mather (1996) Kinetics of the reaction of carbon dioxide with 2-amino-2-methyl-1-propanol solutions, Chem. Eng. Sci., 51(6), 841-850 https://doi.org/10.1016/0009-2509(95)00327-4
  17. Yeh, J.T., K.P. Resnik, K. Rygle, and H.W. Pennline (2005) Semi-batch absorption and regeneration studies for $CO_2$ capture by aqueous ammonia, Fuel Proce. Tech., 86, 1533-1546 https://doi.org/10.1016/j.fuproc.2005.01.015
  18. Yu, W.C., G. Astarita, and D.W. Savage (1985) Kinetics of carbon dioxide absorption in solutions of methyldiethanolamine, Chem. Eng. Sci., 40(8), 1585-1590 https://doi.org/10.1016/0009-2509(85)80101-9