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Abstract — In an estuary, mixing and transport of contaminant sometimes occurs in the salt finger favorable
condition (Hwang ang Rehmann, 2004). Linearized theory is applied to predict flow dynamics in salt finger
favorable condition. The simulated results match well with previous laboratory experiments. When the density
ratio is larger than 2, the heat and salt system shows 0.55~0.57 as Turner (1967) found, and the salt and sugar
system produces 0.87 of Griffiths (1980). As the ratio of molecular diffusivities of two scalars increases, the
flux ratio increases. The flux and eddy diffusivity ratios decrease with increase of density ratio, and it takes
longer time for flux ratio to be steady state at the higher density ratios.
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1. INTRODUCTION

Salt fingering is one of the dominant processes of ther-
mohaline mixing and transport in the ocean (Gregg, 1987).
In the estuary, where warm salt sea water meets with cold
fresh water from river, salt finger process can occur and
change the mixing properties of salinity, heat and contam-
inants. Even though the exact contribution of double diffu-
sion to0 mixing is not yet determined clearly nor studied
well, this special processes are also observed in the estuar-
ian mixing like as in Saemangum lake winter mixing (Hwang
and Rehmann, 2004)}. Compared with small scale turbu-
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lence driven mixing, salt finger has much higher transport
rates of heat and salt. Salt fingering also has higher salt flux
than heat flux, which are assumed as equivalent to each
other in the oceanic numerical models. The importance of
different transport rates of heat and salt in the ocean models
was emphasized by Gargett and Holloway (1992). In par-
ticular, the salt fingering contribution to circulation model
was presented by Zhang et al. (1998).

Even though the salt fingering is an important process in
thermohaline mixing, it is very complicated to find the
transport properties in diverse systems through laboratory
and numerical experiments, which were considered to study
the physics of salt fingers {e.g., Turner (1967), Radko and
Stern (1999)). To avoid heat loss or fast convection process,
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laboratory experiments have been performed with salt-sugar
system instead of heat-salt system (e.g., Krishnamutri (2003),
Wells (2001b)). Laboratory experiments also have limita-
tions on the boundary effects and sharp interface of heat
and salt. Even though the direct numerical model simula-
tion (DNS) is possible with higher Prandtle number (Pr)
and smaller Lewis number(z), it is hard to simulate long
enough and expensive to capture the whole evolution of salt
fingers until flux ratios reach certain critical state.

Schmitt (1979) solved linear equations based on linear
stability analysis and found a relationship between the max-
imum growth rate and other parameters such as the density
ratio R, Lewis number 7 and Prandtl number Pr, when
density ratio can be defined as
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The present work solves a set of linearized equations,
which are similar to Schmitt (1979b), to overcome the lim-
itations of the laboratory and direct numerical simulation
studies. While Schmitt solved the problems based on the
linear stability analysis, the present work derived equations
from a lincar turbulence equation and can include other
directional momentum equations. Solving the linearized equa-
tions has advantéges in using lower molecular diffusivity of
salt, calculating faster than the whole set of non-linear tur-
bulence equations and avoiding mathematical complexity of
linear stability analysis.\par

2. METHODS

When the time scale of the mean flow is smaller than
that of the turbulence in stably and unstably stratified flows,
non-linear terms can be neglected. Hanazaki and Hunt
(1996) applied linear dynamics to stably stratified flows,
Townsend (1976) presented linear turbulence model results
for Bénard convection, and Hanazaki (2002) also predicted
flow behavior in a unstable flow. Comparing buoyancy
terms with non-linear terms,

2
UN=2
7 uN Nl«l
When u is the velocity fluctuation scale, / is the length scale, and
N is the buoyancy frequency, Hanazaki and Hunt (1996) showed
that linear theory can be applied to predict turbulence based on
the Froude number of Fr = (w/NF)'? and in the range of
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We treat homogeneous turbulence in a fluid subject to
linear temperature and salinity profiles. When the assump-
tions are applied to governing equations, nonlinear terms
can be neglected. We introduce a Fourier representation of
the dependent variables; for example,

u(&. =Sk e 3)
where k; is the wave number in the j-direction, i= J-1, and the
hats denote Fourier amplitudes. Salinity and temperature mean
profiles are defined with each (alAg'/a’x3)1/2 and (dT/dx3)m. Time
scale is defined with 1/N and dimensionless time is 7=Nz. The
temperature term is #(go7/N) and the salinity term #s= gBS/N
is when o is thermal expansion coefficient and f is haline coefficient.
The Reynolds number, Re is NP/v. Then, when the pressure is

eliminated with the continuity equation, the resulting system is
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when N, = ga(dT/dx3)'” and Ny=gB(dS/dx3)'” are the temperature
and salinity mean fluctuating frequencies and the buoyancy
frequency can be defined by N°=N;—N;. When transport equations
are derived from the above fluctuation equations, then the vertical

scalar flux or correlation term can be defined as

Oy (K e N,
= (1) B+ - 21+ ) ©)

The more detailed derivation of each terms are defined
in Rehmann and Hwang (2004). The given correlation
equations become a set of ordinary differential equations
and solved by the stiff method using LSODA package.

3. RESULTS

Fig. 1 presents the flux ratios depending on the Lewis
numbers. When turbulence mixes two scalars, the flux ratio
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Fig. 1. Flux ratios for various Lewis numbers. When 1 is 1/100 (heat
and salt), flux ratio is 0.58, which is similar to Turner (1967) and
when 1 is 1/3 (salt and sugar), flux ratio is 0.87, which was observed
by Griffiths (1980) in laboratory experiment.

will equal the density ratio when the eddy diffusivities of
salt and heat equal. After initial turbulence kinetic energy
is damped by stratification, salt fingers control the mixing.
In that case, the density ratio no longer equals the flux
ratio.

The present simulation produces flux ratio similar to
those observed in previous laboratory experiments. When t
is 1/100 corresponding to a heat and salt system and R, is
larger than 2, the flux ratio is 0.58, which was similar to
0.56 of Turner’s experiment. Griffiths (1980) found 0.88 in
the salt-sugar laboratory experiment, when density ratio is
larger than 2. The present work used a Prandtl number of
7 to model the stably distributed scalar instead of 700 of
salt and a Prandtl number of 21 for the unstably distributed
scalar instead of 2100 for sugar to reduce computing time
and remove numerical instability. However, the present
results produce a flux ratio of 0.87, which is similar to that
in Griffiths (1980). As Schmitt (1983) described, the Prandtl
number is not critical in the case of the large Lewis num-
ber. For all Lewis numbers, the flux ratios follow similar
evolution. When 1 is 1/100, the flux ratio deviates from
other cases, and decreases toward 0.58. As the Lewis num-
ber increases, the maximum value of the flux ratio appears
later and approach a larger final value.

Fig. 2 presents the eddy diffusivity ratios as a function
of time for various density ratios. At the initial time, the
eddy diffusivity ratio is smaller than 1 in all cases. At the
lowest density ratio (R~=1.2), the diffusivity ratio remains
smaller than 1 until initial fluctuations are damped by the
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Fig. 2. Diffusivity ratio as a function of density ratio. The numbers
under the line indicates the density ratios.

stratification. After initial fluctuations activate motion, the
flux behavior is similar to the stably stratified flow. In this
period, effects of salt fingers are negligible, and fluxes of
salt and heat oscillate as in the strongly stratified flow. As
time increases, the diffusivity ratio increases with higher
density ratios. When the density ratio is 5, the diffusivity
ratio grows over 2, and after fluctuations are damped and
salt fingers becomes dominant, the diffusivity ratio drops to
0.12, which is close to 0.1, the square root of the Lewis
number. The steady state of diffusivity ratio appears at the
later time as density ratio increases.

In the earlier period of Fig. 2 Nt<1, diffusivity ratio is
slightly smaller than 1. Before simulation, we expected that
this may be exact 1, however, the simulation produced the
different results from our expectation. Hanazaki and Hund
(1996) showed that the linear theory can explain turbulent
flows in a very short period and linear theory can be
applied independently from whether flow is stratified or
not. The derivation of each transport equation is similar to
Hanazaki and Hunt (1996). After the fourier transforming,
the equations are expanded by the power series or pertur-
bation method in a short period such as

Ey = Eyt1EL +T°Es; +0(1)) (10)
Esr=Es(0)+1Esr +TEyr +O(1) (11)
Epr=Er{0)+1Er; +TEfr +0(x") (12)
Esr = Esl(0)+1ES +TEsy +0(7) (13)

After putting the above terms into transport equations,
each coefficients can be derived by ignoring the higher order
terms and the results are integrated through volume in the
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spherical coordinate. After the integration of 6 and ¢ is
numerated, heat and salt transport equations become

oFE = awT
=N I (4-6Re "' KP1—-2Re *Sc; ot tEy(k)dk (14)
'k
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when o and B are heat and salt expansion coefficient and N;* and
N¢ are the gradients of heat and salt. The density ratio R, can be
defined as aN7/BNs* that is assumed simply to be 1. Based on
the above relationships, the eddy diffusivity ratio of heat and salt

is defined as

b I (2-3Re ' K¥1—Re 'S¢, k) Ey(kydk
LT _ %k
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The eddy diffusivity ratio is smaller than 1, since Scs is
larger than Scz Therefore, the eddy diffusivity of salt with
smaller molecular diffusivity is larger than that of heat. As
the Reynolds number decreases, the diffusivity ratio decreases
to smaller magnitude (Fig. 3). This indicates that as turbu-
lence becomes stronger, the diffusivity ratio increases and
becomes closer to 1. I turbulence is not strong enough,
however, then salt flux is larger than heat flux. Amplitudes
of fluctuations have sinusoidal forms (Hanazaki and Hunt,
1996) and this implies oscillation or rotation. As amplitude
of velocity increases, the flux of heat increases faster than
that of salt.

The flux coefficients are compared with the previous
results from the linear theory and laboratory experiment
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Fig. 3. Eddy diffusivity ratio in the different turulence Reynolds number of
g/vN?.
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Fig. 4. The comparison of the flux coefficient with the previous works. ©
is 0.01, and Re=10 for the present case. Solid line shows the present
work, dotted line indicates Schmitt (2003), round markers present
Schimtt (1979a), square maekres show McDougal and Taylor (1984)
and triangle does Taylor and Buens (1989).

(Fig. 4). The flux is determined when the flux ratio becomes
an asymptotic value. Kunze (2003) compared flux coeffi-
cients of the previous results. The flux coefficient of salin-

ity is defined as
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The exponent of the gradient in the denominator is not
universal. Turner (1967) suggested 4/3, which is used in the
present work and Kelley (1990) showed 5/4. Taylor and
Veronis (1996) also found that 4/3 is not universal. Even
though the previous works propose different power law, we
choose an exponent of 4/3 to make the problem simpler for
comparison.

Linear theory predicts the flux coefficients well when the
density ratio is smaller than 2. Beyond this density ratio,
Schmitt’s (1979) results match well with the previous works.
While Schimtt found the flux of the fastest growing fingers,
the present study derived the total flux instead of the flux
of the fastest fluctuation at a wave number. When density
ratio is small then the blob has larger bandwidth comparing
the higher density ratio at which the blob is thinner. There-
fore, when we integrate flux over whole scales, the present
results match better than Schimtt’s. When density ratio is
larger than 3, the present results underestimate the flux
coefficeint and Schmitt’s results matches well to the previ-
ous laboratory experiment.

The experimental results produce the fluctuations of salinity
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at each wave number with time. At each wave number, we
found temporal minimum fluctuation S; and time of salinity
() and after that time, fluctuation grows monotonically. At
the final simulation time (z), the maximum fluctuation is
determined as S,. During period between # and #,, we found
the growth rate. The growth rate can be calculated as

S, = S1exp(Gu(k)(t,— 1))

i (Sz
1 22
PR s,)

The maximum growth rate is determined at the maxi-
mum Gp(k). The maximum growth rate wave number is
normalized and transformed in the same way as Schmitt
(1983). When the growth rate is expressed as Gy, the trans-
formed growth rate (G) is Gu(1 - R,")?12n.

From the maximum growth rate and scale analysis of salt
fingers, the bandwidth relationship can be defined. The scale
of salt fingers has been investigated in previous work. Stern’s
(1975) analysis suggests that the salt finger wavelength is

(2T

(18)
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Other possible length scales are
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Tritton (1988) derived
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where & is the wavelength of salt fingers and L is the layer thickness.
If we rewrite Tritton’s relationship as the present expression, then
salinity length scale becomes equal to equation (22).

The wavenumber ratio for bandwidth is derived with equa-
tions (21) and (22). One can define the marginal stable
wave number as kyin, Which is the inverse of A, and the
marginal unstable wavenumber as kna., which is the inverse

As. From the two marginal wavenumbers, the bandwidth

-
m b
w.
o
(3]

Fig. 5. Dependence of the bandwidth at Re=10 on R,.

relationship can be defined as

T .08 T4
k T A %o Pak
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oz

= C(R,- 1) (24)

where C is the bandwidth coefficient. As density ratio decreases,
the bandwidth increases. The bandwidth of salt fingers also
depend on the Lewis number. As the Lewis number becomes
smaller, the bandwidth of salt finger becomes larger. Therefore, a
salt-sugar system (t~1/3) has a smaller bandwidth than a heat-salt
system (t~1/100t). Schmitt (1983) defined the bandwidths of
wavenumbers, which have the growth rates satisfying exp(2i/
Am)=1/¢*, where ), means the maximum growth rate. We determined
the bandwidth bésed on Schmitt’s e-folding time definition of
growth rate, £=1/An. Two wave numbers satisfying this relationship
are kmin and kmax, Which have the growth rates equivalent to 0.653
times of the maximum growth rate. ,

Fig. 5 compares the results of the simulation and the
equation 24. From the simulation results, we can get the
bandwidth coefficient which is 1.2 when the Lewis number
is 0.01 corresponding to salt and heat. Fig. 5 presents the
density ratio effects on the bandwidth. The simulation
results show that the bandwidth is the function of 1/4
power of the density ratio as in equation 24. As density
ratio increases, the bandwidth decreases. Since k. is always
larger than k.., the bandwidth ratio decreasing means thin-
ner shape of fingering growth. As density ratio decreases,
the bandwidth ratio increases and the blob has more flatten
shape.
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4. CONCLUSION

Linearized theory is applied to predict dynamics of a
flow in a salt finger favorable condition. When buoyancy
controls the flow, nonlinear terms can be neglected by com-
paring the time scales. In particular, the time scale ratio (g/
vN2~0O(1)) of salt fingers measured in the ficld was small
enough to satisfy the assumption of linearized theory. In
unsheared condition, the flux ratios of Turner (1967) and
Lambert and Demenkov (1972)’s laboratory experiments are
reproduced by the linearized simulation. When the density
ratio is larger than 2, the heat and salt system shows 0.55$-
$0.57 as Turner (1967) found, and the salt and sugar system
produces 0.87 of Griffiths (1980). The Lewis number, the
ratio of molecular diffusivities of stably and unstably strat-
ified scalars, also determines the flux ratio which increases
as the Lewis number increases. At a fixed Lewis number,
the ratio of fluxes or eddy diffusivities of salt and temper-
ature depend on the density ratio. As the density ratio increases,
flux of eddy diffusivity ratios decrease, and it takes longer
time for flux ratio to be steady state. When the maximum salt
finger growth rate depends on the density ratio as predicted by
Schmitt (1979), the relationship between the bandwidth is a
function of the density ratio and the Lewis number.

REFERENCE

[1] Gargett, A. and Holloway, G., 1992, Sensitivity of the gfdl ocean
model to different diffusivities for heat and salt. J Phys. Ocean-
ogr, 22, 1158-1177.

[2] Gregg, M. and Sanford, T., 1987, Shear and turbulence in a ther-
mohaline staircase. Deep-Sea Res., 34, 1689-1696.

{3] Griffiths, R. and Ruddick, B., 1980, Accurate fluxes across a salt
sugar finger interface deduced from direct density measure-
ments. J. Fluid Mech., 99, 85-95.

[4] Hanazaki, H., 2002, Linear processes in stably and unstably
stratified rotating turbulence. J. Fluid Mech., 465, 157-190.

[5] Hanazaki, H. and Hunt, J., 1996, Linear processes in unsteady
stably stratified turbulence. J Fluid Mech., 318, 303-337.

[6] Hwang, J. and Rehmann, C., 2005, The shear effects on the salt
finger favorable interface. Proceedings of IAHR 2005, IAHR,
4233-4240.

[7] Kelley, D., 1990, Fluxes through diffusive staircases: A new for-
mulation. J. Geophys. Res., 95, 3,365-3,371.

[8] Krishnamurti, R., 2003, Double-diffusive transport in laboratory
thermohaline staircases. J. Fluid Mech., 483, 287-314.

[9] Kunze, E., 2003, A review of oceanic salt-finger theory. Prog.
Oceanogr., 56, 399-417.

[10] Lambert, R. and Demenkow, J., 1972, On vertical transport due
to @ngers in double diffusive convection. J. Fluid Mech., 54,
627-640.

[11] McDougall, T. and Taylor, J., 1984, Flux measurements across
a finger interface at low values of the stability ratio. J. Mar. Res.,
2, 1-14.

[12] Radko, T. and Stern, M., 1999, Salt fingers in three dimensions.
J. Mar. Res., 57, 471-502.

[13] Rehmann, C. and Hwang, J., 2005, Smali-scale structure of
strongly stratified turbulence. J. Phys. Oceanogr., 35, 151-164.

[14] Schmitt, R., 1979a, Flux measurements in an interface. J. Mar
Science, 37, 419-436.

[15] Schmitt, R., 1979b, The growth rate of super-critical salt fingers.
Deep-Sea Res., 26A, 23-24.

[16] Schmitt, R., 1983, The characteristics of salt finger in a variety
of fluid systems, including stellar interiors, liquid metals, oceans,
and magmas. Phys. Fluids, 26, 2373-2377.

[17] Stern, E., 1975, Ocean Circulation Physics, volume 19 of Inter-
national Geophysics Series. Academic Press.

[18] Taylor, J. and Bucens, P., 1989, Laboratory experiments on the
structure of salt fingers. Deep-Sea Res., 36, 1675-1704.

[19] Taylor, J. and Veronis, G.,, 1996, Experiment of double-diffusive
sugar-salt fingers at high stability ratio. J. Fluid Mech., 321,
315-333.

[20] Townsend, A., 1976, The Structure. of Turbulent Shear Flow.
Cambridge, UK., 2nd edition.

[21] Tritton, D., 1988, Physical Fluid Dynamics. Oxford Science
Publications, Oxford, UK.

[22] Turner, J., 1967, Salt fingers across a density interface. Deep-
Sea Res., 14, 599-611.

[22] Wells, M., 2001b, Convection, turbulence mixing and salt fin-
gers. Ph: D: thesis, The Australian National Univeristy.

[23] Zhang, J., Schmitt, R. and Huang, R., 1998, Sensitivity of GFDL
modular ocean model to the parameterization of double-diffu-
sive process. J. Phys. Oceanogr., 28. 589-605.

20063 8¥ 28Y YuHSF
20079 18 34 SHE A



