DOI QR코드

DOI QR Code

Electrochemical Study of [Ni63-Se)2μ4-Se)3(dppf)3] Cluster and Its Catalytic Activity towards the Electrochemical Reduction of Carbon Dioxide

  • Park, Deog-Su (Center for Innovative BioPhysio Sensor Technology, Pusan National University) ;
  • Jabbar, Md. Abdul (Department of Chemistry, Pusan National University) ;
  • Park, Hyun (Advanced Ship Engineering Research Center, Pusan National University) ;
  • Lee, Hak-Myoung (Department of Chemistry, Pusan National University) ;
  • Shin, Sung-Chul (Department of Chemistry, Gyeongsang National University) ;
  • Shim, Yoon-Bo (Department of Chemistry, Pusan National University)
  • Published : 2007.11.20

Abstract

The redox behavior of a [Ni6(μ3-Se)2(μ4-Se)3(Fe(η 5-C5H4P-Ph2)2)3] (= [Ni-Se-dppf], dppf = 1,1-bis(diphenylphosphino) ferrocene) cluster was studied using platinum (Pt) and glassy carbon electrodes (GCE) in nonaqueous media. The cluster showed electrochemical activity at the potential range between +1.6 and ?1.6 V. In the negative region (0 to ?1.6 V), the cluster exhibited two-step reductions. The first step was one-electron reversible, while the second step was a five-electron quasi-reversible process. On the other hand, in the positive region (0 to +1.6 V), the first step involved one-electron quasi-reversible process. The applicability of the cluster was found towards the electrocatalytic reduction of CO2 and was evaluated by experiments using rotating ring disc electrode (RRDE). RRDE experiments demonstrated that two electrons were involved in the electrocatalytic reduction of CO2 to CO at the Se-Ni-dppf-modified electrode.

Keywords

References

  1. Lauher, J. W. J. Am. Chem. Soc. 1978, 100, 5305 https://doi.org/10.1021/ja00485a011
  2. Lauher, J. W. J. Am. Chem. Soc. 1979, 101, 2604 https://doi.org/10.1021/ja00504a016
  3. Lemoine, P. Coord. Chem. Rev. 1982, 47, 56
  4. Lemoine, P. Coord. Chem. Rev. 1988, 83, 169 https://doi.org/10.1016/0010-8545(88)80023-7
  5. Burrows, C. J.; Muller, J. G. Chem. Rev. 1998, 98, 1109 https://doi.org/10.1021/cr960421s
  6. Erkkila, K. E.; Odom, D. T.; Barton, J. K. Chem. Rev. 1999, 99, 2777 https://doi.org/10.1021/cr9804341
  7. Gan, K.-S.; Hor, T. S. A. Ferrocenes Togni, A.; Hayashi, T., Eds.; VCH: New York, 1995; pp 3-104
  8. Kaim, W.; Klein, A.; Glockle, M. Acc. Chem. Res. 2000, 33, 755 https://doi.org/10.1021/ar960067k
  9. Wong, W.-Y.; Wong, W. T. J. Chem. Soc. Dalton Trans. 1996, 3209
  10. Lau, C. S.-W.; Wong, W.-T. J. Organomet. Chem. 1999, 588, 113
  11. Adams, R. D.; Qu, B. Organometallics 2000, 19, 2411 https://doi.org/10.1021/om000269r
  12. Adams, R. D.; Qu, B. Organometallics 2000, 19, 4090 https://doi.org/10.1021/om000432i
  13. Adams, J.; Berry, D. E.; Browing, J.; Burth, D.; Curnow, O. J. J. Organomet. Chem. 1999, 580, 245 https://doi.org/10.1016/S0022-328X(98)01163-2
  14. Arakawa, H.; Aresta, M.; Armor, J. N.; Barteau, M. A.; Beckman, E. J.; Bell, A. T.; Bercaw, J. E.; Creutz, C.; Dixon, D. A.; Domen, K.; DuBois, D. L.; Eckert, J.; Fijita, E.; Gibson, D. H.; Goddard, W. A.; Goodman, D. W.; Keller, J.; Kubas, G. J.; Kung, J. E.; Lyons, L. E.; Manzer, T. J.; Marks, K.; Morokuma, K. M. Nicholas, R.; Periana, H. H.; Que, L.; Rosteup-Nielson, J.; Sachtler, W. M. H.; Schmidt, L. D.; Sen, A.; Somorajai, G. A.; Stair, P. C.; Stults, B. R.; Tumas, W. Chem Rev. 2001, 101, 953
  15. Fujita, E.; Brunschwig, B. S. Homogeneous Redox Catalysis of $CO_{2}$ Fixation; Balzani, V., Ed.; Wiley-VCH: Weinheim, 2001; Vol. IV, pp 88-126
  16. Darensbourg, D. J.; Rokicki, A. J. Am. Chem. Soc. 1982, 104, 349 https://doi.org/10.1021/ja00365a089
  17. Darensbourg, D. J. The Organometallic Chemistry of Carbon Dioxide Pertinent to Catalysis; Branden, C. I.; Schneider, G., Eds.; Oxford University Press: 1994; p 111
  18. Kim, S. G.; Kim, D. H.; Kang, D. M.; Jabbar, Md. A.; Min, G. S.; Shim, Y.-B.; Shin, S. C. Bull. Korean Chem. Soc. 2005, 26, 1603 https://doi.org/10.5012/bkcs.2005.26.10.1603
  19. Taniguchi, I. Modern Aspect of Electrochemistry; Bockris, J.O'M.; White, R. E.; Conway, B. E., Eds.; Plenum Press: New York, 1989; Vol. 20, Chapter 5
  20. Chiericato Jr., G.; Arana, C. R.; Casado, C.; Caudrado, I.; Abruna, H. D. Inorg. Chem. Acta 2000, 300, 32 https://doi.org/10.1016/S0020-1693(99)00420-X
  21. Alwis, C. D.; Crayston, J. A.; Cromie, T.; Eisenblatter, T.; Hay, R. W.; Lampeka, Y. D.; Tsymbal, L. V. Electrochim. Acta 2000, 45, 2061 https://doi.org/10.1016/S0013-4686(99)00427-2
  22. Tezuka, M.; Yajima, T.; Tsuchiya, A.; Matsumoto, Y.; Uchida, Y.; Hidai, M. J. Am. Chem. Soc. 1982, 104, 6834 https://doi.org/10.1021/ja00388a085
  23. Kang, D. M.; Shin, S. C. Preparation and synthesis of the cluster, submitted
  24. Bard, A. J.; Faulkner, L. R. Electrochemical Methods, Fundamentals and Applications; Wiley: New York, 2001; pp 210-243
  25. Matsumoto, K.; Ikuzawa, M.; Kamikubo, M.; Ooi, S. Inorg. Chem. Acta 1994, 217, 129 https://doi.org/10.1016/0020-1693(93)03760-8
  26. de Biani, F. F.; Graiff, C.; Opromolla, G.; Predieri, G.; Tiripicchio, A.; Zanello, P. J. Organomet. Chem. 2001, 637, 586 https://doi.org/10.1016/S0022-328X(01)00958-5
  27. CRC Hanbook of Chemistry and Physics; Lide, D. R., Ed.; CRC press LLC: 2000; pp 6-191
  28. Lieber, C. M.; Lewis, N. S. J. Am. Chem. Soc. 1984, 106, 5033 https://doi.org/10.1021/ja00329a082
  29. Zagal, J. H. Coord. Chem. Rev. 1992, 119, 85
  30. Yoshio, H.; Ryutaro, T.; Yuzuru, Y.; Akira, M. J. Phy. Chem. B 1997, 101, 7075 https://doi.org/10.1021/jp970284i
  31. Bron, M.; Bogdanoff, P.; Fiechter, S.; Dorbandt, I.; Hilgendorff, M.; Schulenburg, H.; Tributsch, H. J. Electranal. Chem. 2001, 500, 510 https://doi.org/10.1016/S0022-0728(00)00416-2

Cited by

  1. Copper Chalcogenide Clusters Stabilized with Ferrocene-Based Diphosphine Ligands vol.52, pp.12, 2013, https://doi.org/10.1021/ic3021854
  2. Structure and Physical Properties of Copper Thiomolybdate Complex, (nBu4N)3[MoS4Cu3Cl4] vol.29, pp.11, 2008, https://doi.org/10.5012/bkcs.2008.29.11.2299