DOI QR코드

DOI QR Code

Synthesis and Characterization of Ir(H)(CO)(PEt3})22-C60)

  • Lee, Chang-Yeon (Department of Chemistry and School of Molecular Science (BK21), Korea Advanced Institute of Science and Technology) ;
  • Lee, Gae-Hang (Department of Chemistry and School of Molecular Science (BK21), Korea Advanced Institute of Science and Technology) ;
  • Kang, Hong-Kyu (Department of Chemistry and School of Molecular Science (BK21), Korea Advanced Institute of Science and Technology) ;
  • Park, Bo-Keun (Department of Chemistry and School of Molecular Science (BK21), Korea Advanced Institute of Science and Technology) ;
  • Park, Joon-T. (Department of Chemistry and School of Molecular Science (BK21), Korea Advanced Institute of Science and Technology)
  • Published : 2007.11.20

Abstract

The title complex, Ir(H)(CO)(PEt3)2(η 2-C60) (2), has been prepared by the reaction of excess C60 (4 equiv) with a tetrairidium complex Ir4(CO)8(PEt3)4 (1) in refluxing chlorobenzene in 40% yield as green crystals. Compound 2 has been characterized by cyclic voltammetry (CV), spectroscopic methods (mass, IR, 1H and 31P NMR), and a single crystal X-ray diffraction study. The molecular structure reveals that the iridium atom of 2 is coordinated by two axial ligands of a hydrogen atom and a carbonyl group, and three equatorial ligands of two phosphorus atoms and an η 2-C60 moiety. The CV study exhibits three reversible one-electron redox waves for the successive reductions of 2, together with additional four redox waves due to free C60 reductions, which was formed by decomposition of 2 in the reduced states. The three reversible redox waves of 2 are shifted to more negative potentials by ca. 270 mV compared to free C60, reflecting both metal-to-C60 π-back-donation and the electron-donating nature of the two phosphorus ligands.

Keywords

References

  1. Fagan, P. J.; Calabrese, J. C.; Malone, B. Science 1991, 252, 1160 https://doi.org/10.1126/science.252.5009.1160
  2. Balch, A. L.; Olmstead, M. M. Chem. Rev. 1998, 98, 2123 https://doi.org/10.1021/cr960040e
  3. Sephens, A. H. H.; Green, M. L. H. Adv. Inorg. Chem. 1997, 44, 1 https://doi.org/10.1016/S0898-8838(08)60127-0
  4. Bowser, J. R. Adv. Organomet. Chem. 1994, 36, 57 https://doi.org/10.1016/S0065-3055(08)60389-5
  5. Balch, A. L.; Lee, J. W.; Noll, B. C.; Olmstead, M. M. Inorg. Chem. 1993, 32, 3577 https://doi.org/10.1021/ic00069a001
  6. Ishii, Y.; Hashi, H.; Hamada, Y.; Hidai, M. Chem. Lett. 1994, 801
  7. Balch, A. L.; Catalano, V. J.; Lee, J. W. Inorg. Chem. 1991, 30, 3980 https://doi.org/10.1021/ic00021a003
  8. Koefod, R. S.; Hudgens, M. F.; Shapley, J. R. J. Am. Chem. Soc. 1991, 113, 8957 https://doi.org/10.1021/ja00023a060
  9. Fagan, P. J.; Calabrese, J. C.; Malone, B. Acc. Chem. Res. 1992, 25, 134 https://doi.org/10.1021/ar00015a006
  10. Douthwaite, R. E.; Green, M. L. H.; Stephens, A. H. H.; Turner, J. F. C. J. Chem. Soc. Chem. Commun. 1993, 1522
  11. Green, M. L. H.; Stephens, A. H. H. J. Chem. Soc. Chem. Commun. 1997, 793
  12. Hsu, H.-F.; Du, Y.; Albrecht-Schmitt, T. E.; Wilson, S. R.; Shapley, J. R. Organometallics 1998, 17, 1756
  13. Rasinkangas, M.; Pakkanen, T. T.; Pakkanen, T. A.; Ahlgren, M.; Rouvinen, J. J. Am. Chem. Soc. 1993, 115, 4901 https://doi.org/10.1021/ja00064a065
  14. Mavunkal, I. J.; Chi, Y.; Peng, S.-M.; Lee, G.-H. Organometallics 1995, 14, 4454
  15. Chernega, A. N.; Green, M. L. H.; Haggitt, J.; Stephens, A. H. H. J. Chem. Soc. Dalton Trans. 1998, 755
  16. Lee, K.; Song, H.; Park, J. T. Acc. Chem. Res. 2003, 36, 78 https://doi.org/10.1021/ar020149a
  17. Hsu, H.-F.; Shapley, J. R. J. Am. Chem. Soc. 1996, 118, 9192
  18. Lee, K.; Hsu, H.-F.; Shapley, J. R. Organometallics 1997, 16, 3876
  19. Park, J. T.; Song, H.; Cho, J.-J.; Chung, M.-K.; Lee, J.-H.; Suh, I.-H. Organometallics 1998, 17, 227
  20. Song, H.; Lee, K.; Park, J. T.; Choi, M.-G. Organometallics 1998, 17, 4477
  21. Wilkinson, G.; Schunn, R. A.; Peet, W. G. Inorg. Synthesis 1972, 13, 126 https://doi.org/10.1002/9780470132449.ch25
  22. Vaska, L. Inorg. Nucl. Chem. Letters 1965, 1, 89 https://doi.org/10.1016/S0020-1650(65)80018-6
  23. Schunn, R. A. Inorg. Chem. 1970, 9, 2567 https://doi.org/10.1021/ic50093a037
  24. Schreiner, S.; Gallaber, T. N.; Parsons, H. K. Inorg. Chem. 1994, 33, 3021 https://doi.org/10.1021/ic00091a051
  25. Balch, A. L.; Catalano, V. J.; Lee, J. W. Inorg. Chem. 1991, 30, 3980 https://doi.org/10.1021/ic00021a003
  26. Drakesmith, A. J.; Whyman, R. J. Chem. Soc., Dalton Trans. 1973, 362
  27. Sheldrick, G. M. SADABS-A Program for Area Detector Absorption Corrections; University of Gottingen: Germany, 1994
  28. Sheldrick, G. M. Acta Crystallogr. A 1990, 46, 467 https://doi.org/10.1107/S0108767390000277
  29. Sheldrick, G. M. SHELX97, Program for Crystal Structure Refinement; University of Gottingen: Germany, 1997
  30. Lee, G.; Cho, Y.-J.; Park, B. K.; Lee, K.; Park, J. T. J. Am. Chem. Soc. 2003, 125, 13920 https://doi.org/10.1021/ja037106p
  31. Song, H.; Lee, Y.; Choi, Z.-H.; Lee, K.; Park, J. T.; Kwak, J.; Choi, M.-G. Organometallics 1998, 17, 4477
  32. Song, H.; Lee, K.; Park, J. T.; Suh, I.-H. J. Organomet. Chem. 1999, 584, 361
  33. Lerke, S. A.; Parkinson, B. A.; Evans, D. H.; Fagan, P. J. J. Am. Chem. Soc. 1992, 114, 7807 https://doi.org/10.1021/ja00046a029
  34. Koefod, R. S.; Xu, C.; Lu, W.; Shapley, J. R.; Hill, M. G.; Mann, K. R. J. Phys. Chem. 1992, 96, 2928 https://doi.org/10.1021/j100186a029