References
- Darbarwar, M.; Sundaramurthy, V. Synthesis 1982, 337
- Shadbolt, R. S.; Woodward, D. R.; Birchwood, P. J. J. Chem. Soc., Perkin Trans. 1 1976, 1190
- van Heerden, P. S.; Bezuidenhoudt, B. C. B.; Ferreira, D. J. Chem. Soc., Perkin Trans. 1 1997, 1141
- van Heerden, P. S.; Bezuidenhoudt, B. C. B.; Ferreira, D. Tetrahedron 1997, 53, 6045 https://doi.org/10.1016/S0040-4020(97)00254-8
- Jung, J. C.; Kim, J. C.; Park, O. S.; Jang, B. S. Arch. Pharm. Res. 1999, 22, 302 https://doi.org/10.1007/BF02976367
- McQuaid, L. A.; Smith, E. C.; Lodge, D.; Pralong, E.; Wikel, J. H.; Calligaro, D. O.; O'Malley, P. J. J. Med. Chem. 1992, 35, 3423 https://doi.org/10.1021/jm00096a019
- Kulagowski, J. J.; Baker, R.; Curtis, N. R.; Leeson, P. D.; Mawer, I. M.; Moseley, A. M.; Ridgill, M. P.; Rowley, M.; Stansfield, I.; Foster, A. C.; Grimwood, S.; Hill, R. G.; Kemp, J. A.; Marshall, G. R.; Saywell, K. L.; Tricklebank, M. D. J. Med. Chem. 1994, 37, 1402 https://doi.org/10.1021/jm00036a002
- Kim, S. H.; Jung, E. J.; So, E. M.; Shen, C. Z.; Chun, H. J.; Kim, Y. M.; Kim, I. K. Bull. Korean Chem. Soc. 2006, 27, 1329 https://doi.org/10.5012/bkcs.2006.27.9.1329
- Roh, S.-G.; Baek, M. S.; Hong, K.-S.; Kim, H. K. Bull. Korean Chem. Soc. 2004, 25, 343 https://doi.org/10.5012/bkcs.2004.25.3.343
- Sethna, S.; Phadke, R. Org. React. 1953, 7, 1
- Jamkhandi, P. S.; Rajagopal, S. Arch. Pharmaz. 1967, 300, 561 https://doi.org/10.1002/ardp.19673000615
- Shah, V. R.; Bose, J. L.; Shah, R. C. J. Org. Chem. 1960, 25, 677 https://doi.org/10.1021/jo01074a630
- Bose, J. L.; Shah, R. C.; Shah, V. R. Chemistry and Industry 1960, 623
- Zeigler, E.; Wolf, R.; Kappe, J. Monatsch 1965, 96, 418 https://doi.org/10.1007/BF00909449
- Shobana, N.; Yeshoda, P.; Shanmugam, P. Tetrahedron 1989, 45, 757 https://doi.org/10.1016/0040-4020(89)80106-1
- Jung, J.-C.; Kim, J.-C.; Park, O.-S. Synth. Commun. 2000, 30, 1193
- Jung, J.-C.; Jung, Y.-J.; Park, O.-S. Synth. Commun. 2001, 31, 1195
- Davidson, D.; Bernhard, S. A. J. Am. Chem. Soc. 1948, 70, 3426 https://doi.org/10.1021/ja01190a060
- Junek, H.; Ziegler, E.; Herzog, U.; Kroboth, H. Synthesis 1976, 332
- Lmamoto, T.; Kodera, M.; Yokoyama, M. Bull. Chem. Soc. Jpn. 1982, 55, 2303 https://doi.org/10.1246/bcsj.55.2303
- Buckle, D. R.; Cantelo, B. C. C.; Smith, H.; Spicer, B. A. J. Med. Chem. 1975, 18, 726 https://doi.org/10.1021/jm00241a017
Cited by
- A one-pot reaction of (chlorocarbonyl) phenyl ketene with β-ketoamides and thiochromen-2-one vol.10, pp.2, 2013, https://doi.org/10.1007/s13738-012-0146-8
- Malonic Acid Half Oxyesters and Thioesters: Solvent-Free Synthesis and DFT Analysis of Their Enols vol.15, pp.15, 2013, https://doi.org/10.1021/ol400804b
- Structural, optical and transport properties of 4-hydroxy coumarin: an organic Schottky diode vol.116, pp.3, 2014, https://doi.org/10.1007/s00339-014-8307-5
- Optical, DC and AC electrical investigations of 4-hydroxy coumarin molecule as an organic Schottky diode vol.25, pp.3, 2014, https://doi.org/10.1007/s10854-014-1718-4
- )-one derivatives for anticancer activity vol.172, pp.5, 2015, https://doi.org/10.1111/bph.12992
- with potential applications in the area of membrane sensing vol.5, pp.128, 2015, https://doi.org/10.1039/C5RA21862D
- Eaton’s reagent catalysed alacritous synthesis of 3-benzazepinones vol.7, pp.4, 2016, https://doi.org/10.5155/eurjchem.7.4.391-396.1477
- vol.8, pp.40, 2016, https://doi.org/10.1039/C6AY01786J
- Gaining Insight Into Reactivity Differences Between Malonic Acid Half Thioesters (MAHT) and Malonic Acid Half Oxyesters (MAHO) vol.23, pp.19, 2017, https://doi.org/10.1002/chem.201605148
- Antifungal Activities of New Coumarins vol.17, pp.5, 2012, https://doi.org/10.3390/molecules17055713
- ]quinolones as antiproliferative agents vol.16, pp.12, 2018, https://doi.org/10.1039/C7OB03186F
- An alternative way to analogues of avenanthramides and their antiradical activity pp.1434-4475, 2019, https://doi.org/10.1007/s00706-018-2288-6
- A Facile Synthesis of 4-Hydroxycoumarin and 4-Hydroxy-2-quinolone Derivatives. vol.38, pp.49, 2007, https://doi.org/10.1002/chin.200749025
- )-ones vol.46, pp.6, 2009, https://doi.org/10.1002/jhet.203
- Facile synthesis of fused quinolines via intramolecular Friedel-Crafts acylation vol.2008, pp.11, 2007, https://doi.org/10.3184/030823408x375070
- Microwave-promoted synthesis of 3-amino-substituted 1,2-benzisoxazoles vol.2, pp.2, 2007, https://doi.org/10.4155/fmc.09.167
- Synthesis, spectral characterization of some new 3-heteroaryl azo 4-hydroxy coumarin derivatives and their antimicrobial evaluation vol.9, pp.2, 2007, https://doi.org/10.1016/j.jtusci.2014.08.001
- Novel Furochromenone based Dual Channel Sensors for Selective Detection of Cu2+ with Potential Applications in Sample Monitoring, Membrane Sensing and Photo–printing vol.1, pp.2, 2007, https://doi.org/10.1002/slct.201500023
- Efficient Synthesis of 4-Hydroxybenzo[h]Quinoline-2(1H)-One and Some Derivatives vol.40, pp.5, 2007, https://doi.org/10.3184/174751916x14599583786239
- Coumarin[4]arene: A Fluorescent Macrocycle vol.20, pp.5, 2018, https://doi.org/10.1021/acs.orglett.7b04045
- MOF‐promoted Three‐component Synthesis of Functionalized Pyrano[3,2‐ c ]chromen under Mild Conditions vol.56, pp.4, 2007, https://doi.org/10.1002/jhet.3519
- Expanding the Family of Fluorescent Coumarin[4]arenes: Improved Synthesis, π‐Extension, and Characterization vol.2019, pp.48, 2019, https://doi.org/10.1002/ejoc.201901189
- Thiocoumarins and Dithiocoumarins: Advances in Synthesis and Pharmacological Activity vol.24, pp.None, 2020, https://doi.org/10.2174/1385272824999200812132707
- In silico molecular docking and in vitro antioxidant activity studies of novel α-aminophosphonates bearing 6-amino-1,3-dimethyl uracil vol.40, pp.2, 2007, https://doi.org/10.1080/10799893.2020.1722166