DOI QR코드

DOI QR Code

Physicochemical and Catalytic Properties of NiSO4/CeO2-ZrO2 Catalyst Promoted with CeO2 for Acid Catalysis

  • Sohn, Jong-Rack (Department of Applied Chemistry, Engineering College, Kyungpook National University) ;
  • Shin, Dong-Cheol (Department of Applied Chemistry, Engineering College, Kyungpook National University)
  • Published : 2007.08.20

Abstract

A solid acid catalyst, NiSO4/CeO2-ZrO2 was prepared simply by promoting ZrO2 with CeO2 and supporting nickel sulfate on CeO2-ZrO2. The support of NiSO4 on ZrO2 shifted the phase transition of ZrO2 from amorphous to tetragonal to higher temperatures because of the interaction between NiSO4 and ZrO2. The surface area of 10-NiSO4/1-CeO2-ZrO2 promoted with CeO2 and calcined at 600 oC was very high (83 m2/g) compared to that of unpromoted 10-NiSO4/ZrO2 (45 m2/g). This high surface area of 10-NiSO4/1-CeO2-ZrO2 was due to the promoting effect of CeO2 which makes zirconia a stable tetragonal phase as confirmed by XRD. The role of CeO2 was to form a thermally stable solid solution with zirconia and consequently to give high surface area and acidity of the sample, and high thermal stability of the surface sulfate species. 10-NiSO4/1- CeO2-ZrO2 containing 1 mol% CeO2 and 10 wt% NiSO4, and calcined at 600 oC exhibited maximum catalytic activities for both reactions, 2-propanol dehydration and cumene dealkylation.

Keywords

References

  1. Tanabe, K.; Misono, M.; Ono, Y.; Hattori, H. New Solid Acids and Bases Kodansha-Elsevier: Tokyo, 1989; p 185
  2. Arata, K. Adv. Catal. 1990, 37, 165 https://doi.org/10.1016/S0360-0564(08)60365-X
  3. Sohn, J. R.; Lim, J. S. Catal. Letts. 2006, 108, 71 https://doi.org/10.1007/s10562-006-0020-3
  4. Olah, G. A.; Prakash, G. K. S.; Sommer, J. Superacids Wiley-Interscience: New York, U. S. A., 1985, pp 33-52
  5. Sohn, J. R.; Lee, S. H. Appl. Catal. A: Gen. 2004, 266, 89 https://doi.org/10.1016/j.apcata.2004.01.034
  6. Arata, K. Appl. Catal. A : Gen. 1996, 146, 3 https://doi.org/10.1016/0926-860X(96)00046-4
  7. Hsu, C. Y.; Heimbuch, C. R.; Armes, C. T.; Gates, B. C. J. Chem. Soc., Chem. Commun. 1992, 1645
  8. Adeeva, V.; de Haan, H. W.; Janchen, J.; Lei, G. D.; Schunemann, V.; van de Ven, L. J. M.; Sachtler, W. M. H.; van Santen, R. A. J. Catal. 1995, 151, 364 https://doi.org/10.1006/jcat.1995.1039
  9. Wan, K. T.; Khouw, C. B.; Davis, M. E. J. Catal. 1996, 158, 311 https://doi.org/10.1006/jcat.1996.0030
  10. Song, X.; Reddy, K. R.; Sayari, A. J. Catal. 1996, 161, 206 https://doi.org/10.1006/jcat.1996.0178
  11. Coelho, M. A.; Resasco, D. E.; Sikabwe, E. C.; White, R. L. Catal. Lett. 1995, 32, 253 https://doi.org/10.1007/BF00813219
  12. Ebitani, K.; Konishi, J.; Hattori, H. J. Catal. 1991, 130, 257 https://doi.org/10.1016/0021-9517(91)90108-G
  13. Signoretto, M.; Pinna, F.; Strukul, G.; Chies, P.; Cerrato, G.; Ciero, S. D.; Morterra, C. J. Catal. 1997, 167, 522 https://doi.org/10.1006/jcat.1997.1575
  14. Hua, W.; Xia, Y.; Yue, Y.; Gao, Z. J. Catal. 2000, 196, 104 https://doi.org/10.1006/jcat.2000.3032
  15. Moreno, J. A.; Poncelet, G. J. Catal. 2001, 203, 153
  16. Sohn, J. R.; Cho, E. S. Appl. Catal. A:Gen. 2005, 282, 147 https://doi.org/10.1016/j.apcata.2004.12.007
  17. Dong, W. S.; Roh, H. S.; Jun, K. W.; Park, S. E.; Oh, Y. S. Appl. Catal. A: Gen. 2002, 226, 63 https://doi.org/10.1016/S0926-860X(01)00883-3
  18. Loong, C. K.; Ozawa, M. J. Alloys Compd. 2000, 303-304, 60 https://doi.org/10.1016/S0925-8388(00)00590-9
  19. Sohn, J. R.; Park, W. C. Appl. Catal. A:Gen. 2002, 230, 11 https://doi.org/10.1016/S0926-860X(01)00952-8
  20. Sohn, J. R.; Lim, J. S. Catal. Today 2006, 111, 403 https://doi.org/10.1016/j.cattod.2005.10.052
  21. Sohn, J. R.; Seo, D. H.; Lee, S. H. J. Ind. Eng. Chem. 2004, 10, 309
  22. Sohn, J. R.; Kim, J. G.; Kwon, T. D.; Park, E. H. Langmuir 2002, 18, 1666 https://doi.org/10.1021/la011304h
  23. Saur, O.; Bensitel, M.; Saad, A. B. M.; Lavalley, J. C.; Tripp, C. P.; Morrow, B. A. J. Catal. 1986, 99, 104 https://doi.org/10.1016/0021-9517(86)90203-4
  24. Yamaguchi, T. Appl. Catal. 1990, 61, 1 https://doi.org/10.1016/S0166-9834(00)82131-4
  25. Morrow, B. A.; McFarlane, R. A.; Lion, M.; Lavalley, J. C. J. Catal. 1987, 107, 232 https://doi.org/10.1016/0021-9517(87)90288-0
  26. Larsen, G.; Lotero, E.; Petkovic, L. M.; Shobe, D. S. J. Catal. 1997, 169, 67 https://doi.org/10.1006/jcat.1997.1698
  27. Afanasiev, P.; Geantot, C.; Breysse, M.; Coudurier, G.; Vedrine, J. C. J. Chem. Soc., Faraday Trans. 1994, 190, 193
  28. Sohn, J. R. J. Ind. Eng. Chem. 2004, 10, 1
  29. Sohn, J. R.; Lee, S. H.; Lim, J. S. Catal. Today 2006, 116, 143 https://doi.org/10.1016/j.cattod.2006.01.023
  30. Sohn, J. R.; Park, W. C. Appl. Catal. A: Gen. 2003, 239, 269 https://doi.org/10.1016/S0926-860X(02)00392-7
  31. Siriwardane, R. V.; Poston, J. A. Jr.; Fisher, E. P.; Shen, M. S.; Miltz, A. L. Appl. Surf. Sci. 1999, 152, 219 https://doi.org/10.1016/S0169-4332(99)00319-0
  32. Sohn, J. R.; Choi, H. D.; Shin, D. C. Bull. Korean Chem. Soc. 2006, 27, 821 https://doi.org/10.5012/bkcs.2006.27.6.821
  33. Satsuma, A.; Hattori, A.; Mizutani, K.; Furuta, A.; Miyamoto, A.; Hattori, T.; Murakami, Y. J. Phys. Chem. 1988, 92, 6052 https://doi.org/10.1021/j100332a042
  34. Olah, F. G. A.; Sommer, G. K. S. J. Science 1979, 206, 13 https://doi.org/10.1126/science.206.4414.13
  35. Sohn, J. R.; Ryu, S. G. Langmuir 1993, 9, 126 https://doi.org/10.1021/la00025a029
  36. Jin, T.; Yamaguchi, T.; Tananbe, K. J. Phys. Chem. 1986, 90, 4794 https://doi.org/10.1021/j100411a017
  37. Sohn, J. R.; Park, W. C.; Kim, H. W. J. Catal. 2002, 209, 69 https://doi.org/10.1006/jcat.2002.3581
  38. Decanio, S. J.; Sohn, J. R.; Fritz, P. O.; Lunsford, J. H. J. Catal. 1986, 101, 132 https://doi.org/10.1016/0021-9517(86)90236-8
  39. Tanabe, K. Solid Acids and Bases Kodansha: Tokyo, 1970; p 103
  40. Sohn, J. R.; Ozaki, A. J. Catal. 1980, 61, 291 https://doi.org/10.1016/0021-9517(80)90370-X
  41. Sohn, J. R.; Kim, J. G.; Kwon, T. D.; Park, E. H. Langmuir 2002, 18, 1666 https://doi.org/10.1021/la011304h
  42. Loong, C. K.; Richardson, Jr. J. W.; Ozawa, M. J. Catal. 1995, 157, 636 https://doi.org/10.1006/jcat.1995.1329
  43. Roh, H. S.; Dong, W. S.; Jun, K. W.; Park, S. E. Chem. Lett. 2001, 88

Cited by

  1. Ceria-Based Solid Catalysts for Organic Chemistry vol.3, pp.6, 2010, https://doi.org/10.1002/cssc.201000054
  2. Eine Brücke zwischen industriellen und wohldefinierten Trägerkatalysatoren vol.130, pp.22, 2018, https://doi.org/10.1002/ange.201702387
  3. Bridging the Gap between Industrial and Well-Defined Supported Catalysts vol.57, pp.22, 2018, https://doi.org/10.1002/anie.201702387
  4. Aqueous hydrogenolysis of glycerol over Ni–Ce/AC catalyst: Promoting effect of Ce on catalytic performance vol.383, pp.1, 2007, https://doi.org/10.1016/j.apcata.2010.05.023