DOI QR코드

DOI QR Code

Kinetics and Mechanism of the Aminolysis of Diphenyl Phosphinic Chloride with Anilines

  • Ul Hoque, Md.Ehtesham (Department of Chemistry, Inha University) ;
  • Lee, Hai-Whang (Department of Chemistry, Inha University)
  • 발행 : 2007.06.20

초록

The aminolyses of diphenyl phosphinic chloride (1) with substituted anilines in acetonitrile at 55.0 oC are investigated kinetically. Large Hammett ρ X (ρnuc = ?4.78) and Bronsted β X (βnuc = 1.69) values suggest extensive bond formation in the transition state. The primary normal kinetic isotope effects (kH/kD = 1.42-1.82) involving deuterated aniline (XC6H4ND2) nucleophiles indicate that hydrogen bonding results in partial deprotonation of the aniline nucleophile in the rate-limiting step. The faster rate of diphenyl phosphinic chloride (1) than diphenyl chlorophosphate (2) is rationalized by the large proportion of a frontside attack in the reaction of 1. These results are consistent with a concerted mechanism involving a partial frontside nucleophilic attack through a hydrogen-bonded, four-center type transition state.

키워드

참고문헌

  1. Friedman, J. M.; Freeman, S.; Knowles, J. R. J. Am. Chem. Soc. 1988, 110, 1268 https://doi.org/10.1021/ja00212a040
  2. Humphry, T.; Forconi, M.; Williams, N. H.; Hengge, A. C. J. Am. Chem. Soc. 2004, 126, 11864 https://doi.org/10.1021/ja047110g
  3. Onyido, I.; Swierczek, K.; Purcell, J.; Hengge, A. C. J. Am. Chem. Soc. 2005, 127, 7703 https://doi.org/10.1021/ja0501565
  4. Um, I. H.; Shin, Y. H.; Han, J. Y.; Mishima, M. J. Org. Chem. 2006, 71, 7715 https://doi.org/10.1021/jo061308x
  5. Skoog, M. T.; Jencks, W. P. J. Am. Chem. Soc. 1984, 106, 7597 https://doi.org/10.1021/ja00336a047
  6. Williams, A. Concerted Organic and Bio-Organic Mechanisms; CRC Press: Boca Raton, 2000; Chapter 7-8
  7. Mol, C. D.; Izumi, T.; Mitra, S.; Tainer, J. A. Nature 2000, 403, 451 https://doi.org/10.1038/35000249
  8. Harger, M. J. P. J. Chem. Soc., Perkin Trans. 2 2002, 489
  9. Reimschussel, W.; Mikolajczyk, M.; Tilk, H. S.; Gajl, M. Int. J. Chem. Kinet. 1980, 12, 979 https://doi.org/10.1002/kin.550121207
  10. Hoff, R. H.; Hengge, A. C. J. Org. Chem. 1998, 63, 6680 https://doi.org/10.1021/jo981160k
  11. Admiraal, S. J.; Herschlag, D. J. Am. Chem. Soc. 2000, 122, 2145 https://doi.org/10.1021/ja993942g
  12. Harger, M. J. P. Chem. Commun. 2005, 22, 2863
  13. Hengge, A. C. Adv. Phys. Org. Chem. 2005, 40, 49 https://doi.org/10.1016/S0065-3160(05)40002-7
  14. van Bochove, M. A.; Swart, M.; Bickelhaupt, M. J. Am. Chem. Soc. 2006, 128, 10738 https://doi.org/10.1021/ja0606529
  15. Rowell, R.; Gorenstein, D. G. J. Am. Chem. Soc. 1981, 103, 5894 https://doi.org/10.1021/ja00409a046
  16. Hall, C. D.; Inch, T. D. Tetrahedron 1980, 36, 2059 https://doi.org/10.1016/0040-4020(80)80096-2
  17. Guha, A. K.; Lee, H. W.; Lee, I. J. Chem. Soc., Perkin Trans 2 1999, 765
  18. Guha, A. K.; Lee, H. W.; Lee, I. J. Org. Chem. 2000, 65, 12 https://doi.org/10.1021/jo990671j
  19. Lee, H. W.; Guha, A. K.; Lee, I. Int. J. Chem. Kinet. 2002, 34, 632 https://doi.org/10.1002/kin.10081
  20. Lee, H. W.; Guha, A. K.; Kim, C. K.; Lee, I. J. Org. Chem. 2002, 67, 2215 https://doi.org/10.1021/jo0162742
  21. Adhikary, K. K.; Lee, H. W.; Lee, I. Bull. Korean Chem. Soc. 2003, 24, 1135 https://doi.org/10.5012/bkcs.2003.24.8.1135
  22. Hoque, M. E. U.; Dey, S.; Guha, A. K.; Kim, C. K.; Lee, B. S.; Lee, H. W. J. Org. Chem. 2007, in press
  23. Lee, I.; Kim, C. K.; Li, H. G.; Sohn, C. K.; Kim, C. K.; Lee, H. W.; Lee, B. S. J. Am. Chem. Soc. 2000, 122, 11162 https://doi.org/10.1021/ja001814i
  24. Hehre, W. J.; Random, L.; Schleyer, P. V. R.; Pople, J. A. Ab Initio Molecular Orbital Theory; Wiley: New York, 1986; Chapter 4
  25. Charton, M. Prog. Phys. Org. Chem. 1987, 16, 287 https://doi.org/10.1002/9780470171950.ch6
  26. Hondal, R. J.; Bruzik, K. S.; Zhao, Z.; Tsai, M.-D. J. Am. Chem. Soc. 1997, 119, 5477
  27. Gregersen, B. A.; Lopez, X.; York, D. M. J. Am. Chem. Soc. 2003, 125, 7178 https://doi.org/10.1021/ja035167h
  28. Hengge, A. C.; Onyido, I. Curr. Org. Chem. 2005, 9, 61 https://doi.org/10.2174/1385272053369349
  29. Holtz, K. M.; Catrina, I. E.; Hengge, A. C.; Kantrowitz, E. R. Biochemistry 2000, 39, 9451 https://doi.org/10.1021/bi000899x
  30. Liu, Y.; Gregersen, B. A.; Hengge, A. C.; York, D. M. Biochemistry 2006, 45, 10043 https://doi.org/10.1021/bi060869f
  31. Omakor, J. E.; Onyido, I.; vanLoon, G. W.; Buncel, E. J. Chem. Soc., Perkin Trans. 2 2001, 324
  32. Oivanen, M.; Ora, M.; Lonnberg, H. Collect. Czech. Chem. Commun. 1996, 61, S-1
  33. Zhang, L.; Xie, D.; Xu, D.; Guo, H. J. Phys. Chem. A 2005, 109, 11295 https://doi.org/10.1021/jp054430t
  34. Ritchie, C. D. In Solute-Solvent Interactions; Coetzee, J. F.; Ritchie, C. D., Eds.; Marcel Dekker: New York, 1969; Ch. 4
  35. Coetzee, J. F. Prog. Phys. Org. Chem. 1967, 4, 54
  36. Spillane, W. J.; Hogan, G.; McGrath, P.; King, J.; Brack, C. J. Chem. Soc., Perkin Trans. 2 1996, 2099
  37. Oh, H. K.; Woo, S. Y.; Shin, C. H.; Park, Y. S.; Lee, I. J. Org. Chem. 1997, 62, 5780 https://doi.org/10.1021/jo970413r
  38. Ba-Saif, S. A.; Waring, M. A.; Williams, A. J. Am. Chem. Soc. 1990, 112, 8115 https://doi.org/10.1021/ja00178a040
  39. Bourne, N.; Chrystiuk, E.; Davis, A. M.; Williams, A. J. Am. Chem. Soc. 1988, 110, 1890 https://doi.org/10.1021/ja00214a037
  40. Bourne, N.; Williams, A. J. Am. Chem. Soc. 1984, 106, 7591 https://doi.org/10.1021/ja00336a046
  41. Lee, I. Chem. Soc. Rev. 1990, 19, 317 https://doi.org/10.1039/cs9901900317
  42. Lee, I. Adv. Phys. Org. Chem. 1992, 27, 57
  43. Lee, I.; Lee, H. W. Collect. Czech. Chem. Commun. 1999, 64, 1529 https://doi.org/10.1135/cccc19991529
  44. Onyido, I.; Albright, K.; Buncel, E. Org. Biomol. Chem. 2005, 3, 1468 https://doi.org/10.1039/b501537e
  45. Buncel, E.; Albright, K.; Onyido, I. Org. Biomol. Chem. 2004, 2, 601 https://doi.org/10.1039/b314886f
  46. Um, I. H.; Jeon, S. E.; Baek, M. H.; Park, H. R. Chem. Commun. 2003, 3016
  47. Hansch, C.; Leo, A.; Taft, R. W. Chem. Rev. 1991, 91, 165 https://doi.org/10.1021/cr00002a004
  48. Streitwieser, A. Jr.; Heathcock, C. H. Introduction to Organic Chemistry, 3rd ed.; Macmillan publishing Co.: New York, 1989; p 693
  49. Lee, I.; Koh, H. J.; Lee, B. S.; Lee, H. W. J. Chem. Soc., Chem. Commun. 1991, 335
  50. Lee, I.; Lee, H. W.; Sohn, S. C.; Kim, C. H. Tetrahedron 1985, 41, 2635 https://doi.org/10.1016/S0040-4020(01)96365-3
  51. Fernandez, I.; Gomez, G. R.; Iglesias, M. J.; Ortiz, F. L.; Alvarez-Manzaneda, R. ARKIVOC (Gainesville, FL, United States) 2005, 9, 375
  52. Alajarin, M.; Lopez-Leonardo, C.; Llamas- Lorente, P. Tetrahedron Lett. 2001, 42, 1041
  53. Cristau, H.-J.; Jouanin, I.; Taillefer, M. J. Organometallic Chem. 1999, 584, 68
  54. Priya, S.; Balakrishna, M. S.; Mobin, S. M. Polyhedron 2005, 24, 1641 https://doi.org/10.1016/j.poly.2005.04.036
  55. Fenske, D.; Teichert, H.; Becher, H. J. Chemische Berichte 1976, 109, 363 https://doi.org/10.1002/cber.19761090138
  56. Zhmurova, I. N.; Kirsanov, A. V. Zhurnal Obshchei Khimii 1963, 33, 1015

피인용 문헌

  1. Kinetics and Mechanism of the Anilinolysis of Diisopropyl Thiophosphinic Chloride in Acetonitrile vol.32, pp.11, 2011, https://doi.org/10.5012/bkcs.2011.32.11.3880
  2. Kinetics and Mechanism of the Benzylaminolysis of O,O-Diphenyl S-Aryl Phosphorothioates in Dimethyl Sulfoxide vol.32, pp.5, 2011, https://doi.org/10.5012/bkcs.2011.32.5.1625
  3. Kinetics and Mechanism of the Anilinolysis of Bis(aryl) Chlorophosphates in Acetonitrile vol.32, pp.6, 2011, https://doi.org/10.5012/bkcs.2011.32.6.1939
  4. Kinetics and Mechanism of the Pyridinolysis of Methyl Phenyl Phosphinic Chloride in Acetonitrile vol.32, pp.6, 2011, https://doi.org/10.5012/bkcs.2011.32.6.1945
  5. Pyridinolysis of Dicyclohexyl Phosphinic Chloride in Acetonitrile vol.32, pp.6, 2011, https://doi.org/10.5012/bkcs.2011.32.6.2109
  6. Kinetics and Mechanism of the Pyridinolysis of Diethyl Thiophosphinic Chloride in Acetonitrile vol.32, pp.8, 2011, https://doi.org/10.5012/bkcs.2011.32.8.2805
  7. Pyridinolysis of Diisopropyl Chlorophosphate in Acetonitrile vol.32, pp.9, 2011, https://doi.org/10.5012/bkcs.2011.32.9.3505
  8. Kinetics and mechanism of the anilinolyses of aryl dimethyl, methyl phenyl and diphenyl phosphinates vol.9, pp.3, 2011, https://doi.org/10.1039/C0OB00517G
  9. Kinetics and Mechanism of the Pyridinolysis of 1,2-Phenylene Phosphorochloridate in Acetonitrile vol.33, pp.1, 2012, https://doi.org/10.5012/bkcs.2012.33.1.270
  10. Pyridinolysis of Bis(N,N-dimethylamino) Phosphinic Chloride in Acetonitrile vol.33, pp.1, 2012, https://doi.org/10.5012/bkcs.2012.33.1.309
  11. Pyridinolysis of Dipropyl Chlorothiophosphate in Acetonitrile vol.33, pp.1, 2012, https://doi.org/10.5012/bkcs.2012.33.1.325
  12. Kinetics and Mechanism of the Anilinolysis of Dibutyl Chlorophosphate in Acetonitrile vol.33, pp.2, 2012, https://doi.org/10.5012/bkcs.2012.33.2.663
  13. Concerted Pathway to the Mechanism of the Anilinolysis of Bis(N,N-diethylamino)phosphinic Chloride in Acetonitrile vol.70, pp.1, 2017, https://doi.org/10.1071/CH16202
  14. Kinetics and mechanism of the aminolysis of aryl ethyl chloro and chlorothio phosphates with anilines vol.5, pp.24, 2007, https://doi.org/10.1039/b713167d
  15. Kinetics and mechanism of the anilinolysis of dimethyl and diethyl chloro(thiono)phosphates vol.21, pp.7-8, 2008, https://doi.org/10.1002/poc.1314
  16. Concurrent primary and secondary deuterium kinetic isotope effects in anilinolysis of O-aryl methyl phosphonochloridothioates vol.7, pp.14, 2009, https://doi.org/10.1039/b903148k
  17. Kinetics and mechanism of the aminolysis of dimethyl and methyl phenyl phosphinic chlorides with anilines vol.22, pp.5, 2009, https://doi.org/10.1002/poc.1478
  18. Kinetics and Mechanism of the Pyridinolysis of Diphenyl Phosphinic and Thiophosphinic Chlorides in Acetonitrile vol.28, pp.10, 2007, https://doi.org/10.5012/bkcs.2007.28.10.1797
  19. Anilinolysis of Diphenyl Thiophosphinic Chloride and Theoretical Studies on Various R1R2P(O or S)Cl vol.28, pp.11, 2007, https://doi.org/10.5012/bkcs.2007.28.11.2003
  20. Aminolysis of 2,4-Dinitrophenyl and 3,4-Dinitrophenyl Benzoates: Effect of ortho-Nitro Group on Reactivity and Mechanism vol.29, pp.10, 2007, https://doi.org/10.5012/bkcs.2008.29.10.1915
  21. Anilinolysis of S-Aryl Phenyl Phosphonochloridothioates in Acetonitrile vol.29, pp.10, 2007, https://doi.org/10.5012/bkcs.2008.29.10.2065
  22. A Mechanistic Study on Alkaline Hydrolysis of Y-Substituted Phenyl Benzenesulfonates vol.29, pp.12, 2007, https://doi.org/10.5012/bkcs.2008.29.12.2477
  23. Reaction Mechanism and Structure of Transition State Determined from Analysis of Bronsted βnuc for Aminolysis of 4-Nitrophenyl Diphenylphosphinate vol.29, pp.12, 2007, https://doi.org/10.5012/bkcs.2008.29.12.2509
  24. Aminolysis of 3,4-Dinitrophenyl Cinnamate and Benzoate 2: Activation Parameters and Transition-State Structures vol.29, pp.3, 2008, https://doi.org/10.5012/bkcs.2008.29.3.575
  25. Aminolysis of Y-Substituted Phenyl 2-Thiophenecarboxylates and 2-Furoates: Effect of Modification of Nonleaving Group from 2-Furoyl to 2-Thiophenecarbonyl on Reactivity and Mechanism vol.29, pp.3, 2007, https://doi.org/10.5012/bkcs.2008.29.3.585
  26. Aminolyses of 2,4-Dinitrophenyl and 3,4-Dinitrophenyl 2-Furoates: Effect of ortho-Substituent on Reactivity and Mechanism vol.29, pp.4, 2007, https://doi.org/10.5012/bkcs.2008.29.4.772
  27. Pyridinolysis of O,O-Diphenyl S-Phenyl Phosphorothiolates in Acetonitrile vol.29, pp.4, 2008, https://doi.org/10.5012/bkcs.2008.29.4.851
  28. Aminolysis of 2,4-Dinitrophenyl and 3,4-Dinitrophenyl 2-Thiophenecarboxylates: Effect of ortho-Nitro Group on Reactivity and Mechanism vol.29, pp.8, 2008, https://doi.org/10.5012/bkcs.2008.29.8.1459
  29. Pyridinolysis of O-Aryl Phenylphosphonochloridothioates in Acetonitrile vol.29, pp.9, 2007, https://doi.org/10.5012/bkcs.2008.29.9.1769
  30. Stepwise walden inversion in nucleophilic substitution at phosphorus vol.11, pp.2, 2007, https://doi.org/10.1039/b813152j
  31. The α-Effect and Mechanism of Reactions of Y-Substituted Phenyl Benzenesulfonates with Hydrogen Peroxide Ion vol.30, pp.10, 2007, https://doi.org/10.5012/bkcs.2009.30.10.2393
  32. Kinetic Studies of the Solvolyses of 4-Nitrophenyl Phenyl Thiophosphorochloridate vol.30, pp.10, 2007, https://doi.org/10.5012/bkcs.2009.30.10.2413
  33. A Kinetic Study on Solvolysis of Diphenyl Thiophosphorochloridate vol.30, pp.2, 2007, https://doi.org/10.5012/bkcs.2009.30.2.383
  34. Kinetics and Mechanism of the Aminolysis of Dimethyl Thiophosphinic Chloride with Anilines vol.30, pp.4, 2009, https://doi.org/10.5012/bkcs.2009.30.4.975
  35. Kinetics and Mechanism of the Pyridinolyses of Dimethyl Phosphinic and Thiophosphinic Chlorides in Acetonitrile vol.31, pp.12, 2007, https://doi.org/10.5012/bkcs.2010.31.12.3856
  36. Kinetic Studies of the Solvolyses of 2,2,2-Trichloro-1,1-Dimethylethyl Chloroformate vol.31, pp.4, 2010, https://doi.org/10.5012/bkcs.2010.31.04.835
  37. Anilinolysis of Diethyl Phosphinic Chloride in Acetonitrile vol.31, pp.5, 2007, https://doi.org/10.5012/bkcs.2010.31.5.1403
  38. Kinetic Studies of the Solvolyses of Isopropenyl Chloroformate vol.31, pp.6, 2007, https://doi.org/10.5012/bkcs.2010.31.6.1793
  39. Study of the solvent effect on the enthalpies of homolytic and heterolytic N–H bond cleavage in p-phenylenediamine and tetracyano-p-phenylenediamine vol.952, pp.1, 2007, https://doi.org/10.1016/j.theochem.2010.04.002
  40. Kinetics and mechanism of the pyridinolyses of dimethyl and diethyl chloro(thiono)phosphates in acetonitrile vol.23, pp.11, 2007, https://doi.org/10.1002/poc.1709
  41. Kinetics and mechanism of the pyridinolysis of N‐aryl‐P,P‐diphenyl phosphinic amides in dimethyl sulfoxide vol.24, pp.6, 2011, https://doi.org/10.1002/poc.1788
  42. Kinetics and Mechanism of the Pyridinolysis of Aryl Ethyl Chlorothiophosphates in Acetonitrile vol.32, pp.11, 2007, https://doi.org/10.5012/bkcs.2011.32.11.3947
  43. Kinetics and Mechanism of the Pyridinolysis of Bis(2,6-dimethylphenyl) Chlorophosphate in Acetonitrile vol.32, pp.12, 2011, https://doi.org/10.5012/bkcs.2011.32.12.4179
  44. Kinetics and Mechanism of the Anilinolysis of Ethylene Phosphorochloridate in Acetonitrile vol.32, pp.12, 2007, https://doi.org/10.5012/bkcs.2011.32.12.4185
  45. Kinetics and Mechanism of the Benzylaminolysis of O,O-Dimethyl S-Aryl Phosphorothioates in Dimethyl Sulfoxide vol.32, pp.12, 2007, https://doi.org/10.5012/bkcs.2011.32.12.4304
  46. Kinetics and Mechanism of the Anilinolysis of Bis(N,N-dimethylamino) Phosphinic Chloride in Acetonitrile vol.32, pp.12, 2007, https://doi.org/10.5012/bkcs.2011.32.12.4361
  47. Kinetics and Mechanism of the Pyridinolysis of Diisopropyl Thiophosphinic Chloride in Acetonitrile vol.32, pp.12, 2007, https://doi.org/10.5012/bkcs.2011.32.12.4387
  48. Kinetics and Mechanism of the Anilinolysis of Dipropyl Chlorothiophosphate in Acetonitrile vol.32, pp.12, 2007, https://doi.org/10.5012/bkcs.2011.32.12.4403
  49. Pyridinolysis of Diethyl Phosphinic Chloride in Acetonitrile vol.32, pp.2, 2007, https://doi.org/10.5012/bkcs.2011.32.2.709
  50. Theoretical Study of Phosphoryl Transfer Reactions vol.32, pp.3, 2007, https://doi.org/10.5012/bkcs.2011.32.3.889
  51. Kinetics and Mechanism of the Anilinolysis of Dicyclohexyl Phosphinic Chloride in Acetonitrile vol.32, pp.6, 2007, https://doi.org/10.5012/bkcs.2011.32.6.1997
  52. Kinetics and Mechanism of the Pyridinolysis of Aryl Phenyl Chlorothiophosphates in Acetonitrile vol.32, pp.4, 2007, https://doi.org/10.5012/bkcs.2011.32.4.1138
  53. Kinetics and Mechanism of the Pyridinolysis of O-Aryl Methyl Phosphonochloridothioates in Acetonitrile vol.32, pp.4, 2011, https://doi.org/10.5012/bkcs.2011.32.4.1375
  54. Kinetics and Mechanism of the Anilinolysis of Diethyl Thiophosphinic Chloride in Acetonitrile vol.32, pp.7, 2007, https://doi.org/10.5012/bkcs.2011.32.7.2306
  55. Kinetics and Mechanism of the Pyridinolysis of O,O-Dimethyl S-Aryl Phosphorothioates in Dimethyl Sulfoxide vol.32, pp.7, 2011, https://doi.org/10.5012/bkcs.2011.32.7.2339
  56. Transition State Variation in the Anilinolysis of O-Aryl Phenyl Phosphonochloridothioates in Acetonitrile vol.32, pp.8, 2007, https://doi.org/10.5012/bkcs.2011.32.8.2628
  57. Kinetics and Mechanism of the Anilinolysis of Diisopropyl Chlorophosphate in Acetonitrile vol.32, pp.9, 2011, https://doi.org/10.5012/bkcs.2011.32.9.3245
  58. Kinetics and Mechanism of the Anilinolysis of 1,2-Phenylene Phosphorochloridate in Acetonitrile vol.32, pp.9, 2007, https://doi.org/10.5012/bkcs.2011.32.9.3355
  59. Kinetics and Mechanism of the Benzylaminolysis of O,O-Diethyl S-Aryl Phosphorothioates in Dimethyl Sulfoxide vol.32, pp.10, 2011, https://doi.org/10.5012/bkcs.2011.32.10.3587
  60. Kinetics and Mechanism of the Pyridinolysis of S-Aryl Phenyl Phosphonochloridothioates in Acetonitrile vol.32, pp.10, 2011, https://doi.org/10.5012/bkcs.2011.32.10.3743
  61. Kinetics and Mechanism of the Anilinolysis of Bis(2,6-dimethylphenyl) Chlorophosphate in Dimethyl Sulfoxide vol.32, pp.10, 2007, https://doi.org/10.5012/bkcs.2011.32.10.3783
  62. A Kinetic Study on Solvolysis of 9-Fluorenylmethyl Chloroformate vol.32, pp.10, 2011, https://doi.org/10.5012/bkcs.2011.32.10.3799
  63. Kinetics and Mechanism of the Anilinolysis of Dibutyl Chlorothiophosphate in Acetonitrile vol.33, pp.3, 2007, https://doi.org/10.5012/bkcs.2012.33.3.843
  64. Kinetics and Mechanism of the Anilinolysis of Dipropyl Chlorophosphate in Acetonitrile vol.33, pp.6, 2012, https://doi.org/10.5012/bkcs.2012.33.6.1879
  65. Kinetics and Mechanism of the Anilinolysis of Aryl N,N-Dimethyl Phosphoroamidochloridates in Acetonitrile vol.35, pp.3, 2007, https://doi.org/10.5012/bkcs.2014.35.3.753