DOI QR코드

DOI QR Code

Comparison of CO on Carbon-supported Pt Catalysts Prepared by CO Gas Bubbling and Methanol Dehydrogenation

  • Han, Kee-Sung (Analysis Research Division, Daegu Center, Korea Basic Science Institute) ;
  • Hwang, Ki-Ju (Analysis Research Division, Daegu Center, Korea Basic Science Institute) ;
  • Han, Oc-Hee (Analysis Research Division, Daegu Center, Korea Basic Science Institute)
  • Published : 2007.12.20

Abstract

CO adsorbates on the surface of Pt supported on carbon catalysts (Pt/C) were investigated by CO stripping voltammetry. Three types of CO adsorbed samples were prepared: by methanol dehydrogenation only (COm), by CO gas bubbling only (COg), and by methanol dehydrogenation followed by CO gas bubbling (COm+g). Our coverage data show that CO gas can be adsorbed on Pt/C catalyst already saturated with CO adsorbates by methanol dehydrogenation. The COm+g sample showed the properties of both COm as well as COg samples in terms of the potential although the CO adsorbed by dehydrogenation was completely exchanged with CO in the electrolyte solution. Therefore, the oxidation pathways of CO on Pt/C were observed to depend on the initial adsorption conditions of CO more strongly than on the CO coverage. Our results imply that an initial CO poisoning condition in fuel cell operation is an important factor to determine the difficulty in removing the adsorbed CO and confirm that the properties of the adsorbed CO do not change even with chemical replacement with CO in different conditions. In addition, our results indicate a low CO surface mobility on the Pt in an electrolyte solution.

Keywords

References

  1. Ross, P. N., Jr. In Electrocatalysis; Lipkowski, J.; Ross, P. N., Eds.; Wiley-VCH: New York, 1988; Ch. 2 and references therein
  2. Arico, A. S.; Srinivasan, S.; Antonucci, V. Fuel Cells 2001, 1, 133 and references therein
  3. Franaszczuk, K.; Herrero, E.; Zelenay, P.; Wieckowski, A.; Wang, J.; Masel, R. I. J. Phys. Chem. 1992, 96, 8509 https://doi.org/10.1021/j100200a056
  4. Koper, M. T. M.; Jansen, A. P. J.; van Santen, R. A.; Lukkien, J. J.; Hilbers, P. A. J. J. Chem. Phys. 1998, 109, 6051 and references therein
  5. Feliu, J. M.; Orts, J. M.; Fernandez-Vega, A.; Aldaz, A. J. Electroanal. Chem. 1990, 296, 191
  6. de Becdelièvre, A. M.; de Becdelièvre, J.; Clavilier, J. J. Electroanal. Chem. 1990, 296, 97
  7. Davies, J. C.; Nielsen, R. M.; Thomsen, L. B.; Chorkendorff, I.; Logadottir, A.; Lodziana, Z.; Norskow, J. K.; Li, W. X.; Hammer, B.; Longwitz, S. R.; Schnadt, J.; Vestergaard, E. K.; Vang, R. T.; Besenbacher, F. Fuel Cells 2004, 4, 309 https://doi.org/10.1002/fuce.200400046
  8. McGovern, M. S.; Waszczuk, P.; Wieckowski, A. Electrochim. Acta 2006, 51, 1194 https://doi.org/10.1016/j.electacta.2005.06.010
  9. Iwasita, T.; Vogel, U. Electrochim. Acta 1988, 33, 557 https://doi.org/10.1016/0013-4686(88)80177-4
  10. Batista, E. A.; Iwasita, T.; Vielstich, W. J. Phys. Chem. B 2004, 108, 14216 and references therein https://doi.org/10.1021/jp038016+
  11. Lu, C.; Rice, C.; Masel, R. I.; Babu, P. K.; Waszczuk, P.; Kim, H. S.; Oldfield, E.; Wieckowski, A. J. Phys. Chem. B 2002, 106, 9581 and references therein
  12. Seland, F.; Harrington, D. A.; Tunold, R. Electrochim. Acta 2006, 52, 773 https://doi.org/10.1016/j.electacta.2006.06.010
  13. Wang, K.; Gasteiger, H. A.; Markovic, N. M.; Ross, P. N., Jr. Electrochim. Acta 1996, 41, 2587 https://doi.org/10.1016/0013-4686(96)00079-5
  14. Rush, B. M.; Reimer, J. A.; Cairns, E. J. J. Electrochem. Soc. 2001, 148, A137 https://doi.org/10.1149/1.1342164
  15. Han, K. S.; Han, O. H. Bull. Kor. Chem. Soc. 2006, 27, 1121 https://doi.org/10.5012/bkcs.2006.27.8.1121
  16. Markovic, N. M.; Gasteiger, H. A.; Ross, P. N., Jr.; Jiang, X.; Villegas, I.; Weaver, M. J. Electrochim. Acta 1995, 40, 91 and references therein
  17. Han, K. S.; Han, O. H. Electrochim. Acta 2001, 47, 519 https://doi.org/10.1016/S0013-4686(01)00773-3
  18. Han, K. S.; Han, O. H.; Babu, P. K. J. Electrochem. Soc. 2005, 152, J131 https://doi.org/10.1149/1.2077327
  19. Brett, C. M. A.; Brett, A. M. O. Electrochemistry Principle, Methods, and Applications; Oxford University Press: Oxford, 1993; p 24

Cited by

  1. Methanol Barriers Derived from Layer-by-Layer Assembly of Poly(ethersulfone)s for High Performance Direct Methanol Fuel Cells vol.29, pp.4, 2007, https://doi.org/10.5012/bkcs.2008.29.4.842
  2. Study of CO Oxidation on Well-Characterized Pt-Ru/C Electrocatalysts Having Different Composition vol.31, pp.1, 2007, https://doi.org/10.5012/bkcs.2010.31.01.151