References
- Madesclaire, M. Tetrahedron 1988, 21, 6537
- Drabowicz, J.; Togo, H.; Mikolajczyk, M.; Oae, S. Org. Prep. Proc. Int. 1984, 16, 171 https://doi.org/10.1080/00304948409355456
- Schmizu, M.; Shibuya, K.; Hayakawa, R. Synlett 2000, 1437
- Khurana, J. M. Tetrahedron Lett. 1998, 39, 3829 https://doi.org/10.1016/S0040-4039(98)00623-6
- Yadav, J. S.; Reddy, B. V. S.; Srinivas, C.; Srihari, P. Synlett 2001, 854
- Balicki, R. Synthesis 1991, 155
- Miller, S. J.; Collier, T. R.; Wu, W. Tetrahedron Lett. 2000, 41, 3781 https://doi.org/10.1016/S0040-4039(00)00502-5
- Firouzabadi, H.; Karimi, B. Synthesis 1999, 500
- Cintas, P. Activated Metals in Organic Synthesis; CRC: Boca Raton, 1993
- Patra, A.; Bandyopadhyay, M.; Mal, D. Tetrahedron Lett. 2003, 44, 2355 https://doi.org/10.1016/S0040-4039(03)00231-4
- Iyer, S.; Kulkarni, G. M. Synth. Commun. 2004, 34, 721 https://doi.org/10.1081/SCC-120027720
- Moody, C. J. Chem. Commun. 2004, 1341
- Guarna, A.; Guidi, A.; Goti, A.; Brandi, A.; De Sarlo, F. Synthesis 1989, 175
- Yoo, B. W.; Choi, J. W.; Yoon, C. M. Tetrahedron Lett. 2005, 46, 125 https://doi.org/10.1016/j.tetlet.2004.11.003
- Harvey, D. F.; Sigano, D. M. Chem. Rev. 1996, 96, 271 https://doi.org/10.1021/cr950010w
- Harvey, D. F.; Brown, M. F. Tetrahedron Lett. 1990, 31, 2529 https://doi.org/10.1016/0040-4039(90)80117-5
- Barluenga, J.; Fananas, F. J.; Tetrahedron 2000, 56, 4597 https://doi.org/10.1016/S0040-4020(00)00237-4
- Shvo, Y.; Green, R. J. Organomet. Chem. 2003, 675, 77 https://doi.org/10.1016/S0022-328X(03)00238-9
- Nitta, M.; Kobayashi, T. J. Chem. Soc., Perkin Trans. I 1985, 1401 https://doi.org/10.1039/p19850001401
- Donate, D.; Ferrini, S.; Fusi, S.; Ponticelli, F. J. Heterocycl. Chem. 2004, 41, 761 https://doi.org/10.1002/jhet.5570410518
- Baraldi, P. G.; Barco, A.; Benetti, S.; Manfredini, S.; Simoni, D. Synthesis 1987, 276
- Trost, B. M.; Li, L.; Guile, S. D. J. Am. Chem. Soc. 1992, 114, 8745 https://doi.org/10.1021/ja00048a083
- Tranmer, G. K.; Tam, W. Org. Lett. 2002, 4, 4101 https://doi.org/10.1021/ol026846k
- Cicchi, S.; Goti, A.; Brandi, A.; Guarna, A.; De Sarlo, F. Tetrahedron Lett. 1990, 31, 3351 https://doi.org/10.1016/S0040-4039(00)89062-0
- Zimmer, R.; Reissig, H. U. J. Org. Chem. 1992, 57, 339 https://doi.org/10.1021/jo00027a058
- Li, F.; Brogan, J. B.; Gage, J. L.; Zhang, D.; Miller, M. J. J. Org. Chem. 2004, 69, 4538 https://doi.org/10.1021/jo0496796
- Vogel's Textbook of Practical Organic Chemistry, 5th ed.; p 792
Cited by
- A straightforward zinc-catalysed reduction of sulfoxides to sulfides vol.1, pp.1, 2011, https://doi.org/10.1039/c0cy00039f
- Reduction of Sulfoxides to Sulfides in the Presence of Copper Catalysts vol.141, pp.6, 2011, https://doi.org/10.1007/s10562-011-0590-6
- O in Water vol.186, pp.7, 2011, https://doi.org/10.1080/10426507.2010.519159
- A Facile and Efficient Iron-Catalyzed Reduction of Sulfoxides to Sulfides vol.3, pp.4, 2011, https://doi.org/10.1002/cctc.201000400
- Zinc-Catalyzed Deoxygenation of Sulfoxides to Sulfides Applying [B(Pin)]2 as Deoxygenation Reagents vol.142, pp.11, 2012, https://doi.org/10.1007/s10562-012-0897-y
- Deoxygenation of Sulfoxides to Sulfides in the Presence of Zinc Catalysts and Boranes as Reducing Reagents vol.142, pp.8, 2012, https://doi.org/10.1007/s10562-012-0862-9
- Carbohydrate nitrone and nitrile oxide cycloaddition approach to chiral sulfur heterocycles and nucleosides vol.2, pp.24, 2012, https://doi.org/10.1039/c2ra20689g
- Recent Advances in Aryl Alkyl and Dialkyl Sulfide Synthesis vol.190, pp.7, 2015, https://doi.org/10.1080/10426507.2014.974754
- Deoxygenation of sulfoxides vol.43, pp.11, 2017, https://doi.org/10.1007/s11164-017-2976-6
- A Facile and Efficient Deoxygenation of Sulfoxides with Mo(CO)6. vol.38, pp.28, 2007, https://doi.org/10.1002/chin.200728088
- A Facile and Efficient Deoxygenation of Amine-N-oxides with WCl6/NaI System vol.29, pp.5, 2007, https://doi.org/10.5012/bkcs.2008.29.5.909
- Mild and Efficient Debromination of vic-Dibromides to Alkenes with NiCl2·6H2O/Indium System vol.29, pp.9, 2008, https://doi.org/10.5012/bkcs.2008.29.9.1655
- Rapid and Mild Deoxygenation of Sulfoxides with MoCl5/Gallium System under Ultrasonication vol.30, pp.9, 2007, https://doi.org/10.5012/bkcs.2009.30.9.1927
- Research Spotlight: Microwave chemistry enabling the synthesis of biologically relevant amines vol.2, pp.2, 2007, https://doi.org/10.4155/fmc.09.114
- Reduction of sulfoxides catalyzed by oxo-complexes vol.51, pp.47, 2007, https://doi.org/10.1016/j.tetlet.2010.09.071
- NaI/silica sulfuric acid as an efficient reducing system for deoxygenation of sulfoxides in poly ethylene glycol (PEG-200) vol.34, pp.3, 2007, https://doi.org/10.1080/17415993.2012.733005
- A very useful and mild method for the deoxygenation of sulfoxide to sulfide with silica bromide as heterogeneous promoter vol.35, pp.1, 2007, https://doi.org/10.1080/17415993.2013.801478
- Efficient Oxidation of Sulfides to Sulfoxides and Deoxygenation of Sulfoxides over Carbonaceous Solid Acid vol.190, pp.7, 2015, https://doi.org/10.1080/10426507.2014.978325
- Selective and efficient desulfurization of thiiranes with Mo(CO)6 vol.41, pp.1, 2007, https://doi.org/10.1080/17415993.2019.1654476
- Totalsynthese von α‐ und β‐Amanitin vol.132, pp.28, 2020, https://doi.org/10.1002/ange.201914935
- Total Synthesis of α‐ and β‐Amanitin vol.59, pp.28, 2020, https://doi.org/10.1002/anie.201914935