DOI QR코드

DOI QR Code

Temperature Dependence of Activation and Inhibition of Mushroom Tyrosinase by Ethyl Xanthate

  • Alijanianzadeh, M. (Institute of Biochemistry and Biophysics, University of Tehran) ;
  • Saboury, A.A. (Institute of Biochemistry and Biophysics, University of Tehran)
  • Published : 2007.05.20

Abstract

A new alkyldithiocarbonate (xanthate), as sodium salts, C2H5OCS2Na, was synthesized by the reaction between CS2 with ethyl alcohol in the presence of NaOH. The new xanthate was characterized by 1H NMR, IR and elemental analysis. Then, the new synthesized compound was examined for functional study of cresolase activity of Mushroom Tyrosinase (MT) from a commercial source of Agricus bisporus in 10 mM phosphate buffer pH 6.8, at three temperatures of 10, 20 and 33℃ using UV spectrophotemetry. 4-[(4-methylphenyl)- azo]-phenol (MePAPh) was used as a synthetic substrate for the enzyme for cresolase reaction. The results show that ethyl xanthate can activate or inhibit the cresolase activity of mushroom tyrosinase depending to the concentration of ethyl xanthate. It was concluded that the enzyme has two distinct sites for ethyl xanthate. The first one is a high-affinity activation site and the other is a low-affinity inhibition site. Activation of the enzyme in the low concentration of ethyl xanthate arises from increasing the affinity of binding for the substrate as well as increasing the enzyme catalytic constant. The affinity of ligand binding in the activation site is decreased by increasing of the temperature, which is the opposite result for the inhibition site. Hence, the nature of the interaction of ethyl xanthate is different in two distinct sites. The binding process for cresolase inhibition is only entropy driven, meanwhile the binding process for cresolase activation is not only entropy driven but also enthalpy driven means that hydrophobic interaction is more important in the inhibition site.

Keywords

References

  1. Espin, J. C.; Varon, R.; Fenoll, L. G.; Gilbert, M. A.; Garcia-Ruiz, P. A.; Tudela, J.; Garcia-Vanovas, F. Eur. J. Biochem. 2000, 267, 1270
  2. Robb, D. A. In Copper Proteins and Copper Enzymes; Lontie, R., Ed.; CRC Press: Boca Raton, 1984; Vol. 2, pp 207-240
  3. Prota, G. In Melanins and Melanogenesis; Jovanovich, H. B., Ed.; Academic Press: San Diego, 1992; pp 34-62
  4. Mason, H. S. Nuture 1956, 177, 79 https://doi.org/10.1038/177079a0
  5. Jolly, R. L. Jr.; Evans, L. H.; Mason, H. S. Biochem. Biophys. Res. Commun. 1972, 46, 878 https://doi.org/10.1016/S0006-291X(72)80223-7
  6. Schoot-Uiterk, J.; Mason, H. S. Proc. Natl. Acad. Sci. USA 1973, 70, 993 https://doi.org/10.1073/pnas.70.4.993
  7. Jolly, R. L. Jr.; Evans, L. H.; Makino, N.; Mason, H. S. J. Biol. Chem. 1974, 249, 335
  8. Makino, N.; Mason, H. S. J. Biol. Chem. 1973, 248, 5731
  9. Makino, N.; McMahill, P.; Mason, H. S.; Moss, T. H. J. Biol. Chem. 1974, 249, 6062
  10. Schoot-Uiterkamp, A. J. M.; Evans, L. H.; Jolley, R. L.; Mason, H. S. Biochim. Biophys. Acta 1976, 453, 200
  11. Lerch, K. In Metal Ions in Biological Systems; Sigel, H., Ed.; Marcel Dekker Inc.: New York, 1981; pp 143-186
  12. Chen, Q.-X.; Liu, X.-D.; Huang, H. Biochemistry (Moscow) 2003, 68, 644 https://doi.org/10.1023/A:1024665709631
  13. Yu, L. Agric. Food Chem. 2003, 51, 2344 https://doi.org/10.1021/jf0208379
  14. Pawelek, J. M.; Korner, A. M. Am. Sci. 1982, 70, 136
  15. Maeda, K.; Fukuda, M. J. Soc. Cosmet. Chem. 1991, 42, 361
  16. Mosher, D. B.; Pathak, M. A.; Fitzpatric, T. B. In Update: Dermatology in General Medicine; McGraw Hill: New York, 1983; pp 205-225
  17. Whitaker, J. R. In Food Enzymes, Structure and Mechanisms; Wong, D. W. S., Ed.; Chapman and Hall: New York, 1995; pp 271-307
  18. Jackman, M. P.; Hajnal, A.; Lerch, K. Biochem. J. 1991, 274, 707
  19. Kubo, I.; Kinst-Hori, I. J. Agric. Food Chem. 1999, 47, 4121
  20. Kubo, I.; Kinst-Hori, I.; Ishiguro, K.; Chaudhuri, S. K.; Sanchez, Y.; Ogura, T. Bioorg. Med. Chem. Lett. 1994, 4, 1443
  21. Kubo, I.; Kinst-Hori, I.; Chaudhuri, S. K.; Kubo, Y.; Sanchez, Y.; Ogura, T. Bioorg. Med. Chem. 2000, 8, 1749
  22. Kubo, I.; Kinst-Hori, I. J. Agric. Food Chem. 1988, 46, 5338
  23. Goetghebeur, M.; Kermasha, S. Phtochemistry 1996, 42, 935 https://doi.org/10.1016/0031-9422(96)86993-7
  24. Kim, Y. M.; Yun, J.; Lee, C. K.; Lee, H.; Min, K. R.; Kim, Y. J. Biol. Chem. 2002, 227, 16340
  25. Chen, J. S.; Wei, C.; Rolle, R. S.; Otwell, W. S.; Balban, M. O.; Marshall, M. R. J. Agric. Food Chem. 1991, 39, 1396 https://doi.org/10.1021/jf00008a008
  26. Chen, J. S.; Wei, C.; Marshall, M. R. J. Agric. Chem. 1991, 39, 1897 https://doi.org/10.1021/jf00011a001
  27. Kahn, V. In Enzymatic Browning and Its Prevention; Lee, C. Y., Whitaker, J. R., Eds.; American Chemical Society: Washington DC, 1995; pp 277-294
  28. Kahn, V.; Ben-Shalom, N.; Zakin, V. J. Agric. Food Chem. 1997, 45, 4460
  29. Cabanes, J.; Chazarra, S.; Garcia-Carmona, F. J. Pharm. Pharmacol. 1994, 46, 982
  30. Lim, J. T. Dermatol. Surg. 1999, 25, 282 https://doi.org/10.1046/j.1524-4725.1999.08236.x
  31. Battaini, G.; Monzani, E.; Casella, L.; Santagostini, L.; Pagliarin, R. J. Biol. Inorg. Chem. 2000, 5, 262 https://doi.org/10.1007/s007750050370
  32. Espin, J. C.; Wichers, H. G. Biochem. Biophys. Acta 2001, 1554, 289
  33. Andrawis, A.; Khan, V. Biochem. J. 1996, 235, 91
  34. Taylor, S. L.; Bush, R. K. Food Technol. 1986, 40, 47
  35. Haghbeen, K.; Saboury, A. A.; Karbassi, F. Biochim. Biophys. Acta 2004, 1675, 139 https://doi.org/10.1016/j.bbagen.2004.08.017
  36. Karbassi, F.; Haghbeen, K.; Saboury, A. A.; Ranjbar, B.; Moosavi-Movahedi, A. A. Coll. Surf. B: Biointerfaces 2003, 32, 137 https://doi.org/10.1016/S0927-7765(03)00153-X
  37. Shareefi-Borojerdi, S.; Haghbeen, K.; Karkhane, A. A.; Fazli, M.; Saboury, A. A. Biochem. Biophys. Res. Commun. 2004, 314, 925 https://doi.org/10.1016/j.bbrc.2003.12.197
  38. Gheibi, N.; Saboury, A. A.; Haghbeen, K.; Moosavi-Movahedi, A. A. Coll. Surf. B: Biointerfaces 2005, 45, 104 https://doi.org/10.1016/j.colsurfb.2005.08.001
  39. Karbassi, F.; Haghbeen, K.; Saboury, A. A.; Ranjbar, B.; Moosavi-Movahedi, A. A.; Farzami, B. Int. J. Biol. Macromol. 2004, 34, 257 https://doi.org/10.1016/j.ijbiomac.2004.06.003
  40. Karbassi, F.; Saboury, A. A.; Hassan-Khan, M. T.; Iqbal- Choudhary, M.; Saifi, Z. S. J. Enz. Inhib. Med. Chem. 2004, 19, 349 https://doi.org/10.1080/14756360409162449
  41. Gheibi, N.; Saboury, A. A.; Mansury-Torshizy, H.; Haghbeen, K.; Moosavi-movahedi, A. A. J. Enz. Inhib. Med. Chem. 2004, 20, 393 https://doi.org/10.1080/14756360500179903
  42. Haghbeen, K.; Tan, E. W. J. Org. Chem. 1998, 63, 4503 https://doi.org/10.1021/jo972151z
  43. Leskovac, V. Comprehensive Enzyme Kinetics; Kluwer Academic/ Plenum Publisher: New York, 2003; Chapter 7, p 111
  44. Ahmed, A. M.; Ibrahim, K.; Anna, O. R.; John, P. F., Jr. Inorg. Chem. 2004, 43, 3833 https://doi.org/10.1021/ic0349858
  45. Fackler, J. P. Jr; William, C. S. Inorg. Chem. 1969, 8, 1631 https://doi.org/10.1021/ic50078a012
  46. Katsoulos, G. A.; Tsipis, C. A. Inorg. Chim. Acta 1984, 84, 89 https://doi.org/10.1016/S0020-1693(00)87674-4
  47. Atkins, P.; DePaula, J. Physical Chemistry, 7th ed.; WH Freeman & Company: New York, 2002; Chap 9

Cited by

  1. Synthetic, spectroscopic, thermal, and structural studies of antimony(III) bis(pyrrolidinedithiocarbamato)alkyldithiocarbonates vol.105, pp.3, 2011, https://doi.org/10.1007/s10973-010-1234-6
  2. Prediction of tyrosinase inhibition for drug design using the genetic algorithm–multiple linear regressions vol.22, pp.11, 2013, https://doi.org/10.1007/s00044-012-0440-0
  3. Ethyl Xanthate and Propyl Xanthate as Activators and Inhibitors of Mushroom Tyrosinase in Different Concentrations vol.55, pp.4, 2007, https://doi.org/10.1002/jccs.200800139
  4. The Versatile Binding Mode of Transition‐State Analogue Inhibitors of Tyrosinase towards Dicopper(II) Model Complexes: Experimental and Theoretical Investigations vol.17, pp.48, 2007, https://doi.org/10.1002/chem.201100665