DOI QR코드

DOI QR Code

Synthesis and Characterization of the Large Single Crystal of Fully K+-exchanged Zeolite X (FAU), |K80|[Si112Al80O384]-FAU (Si/Al=1.41)

  • Lim, Woo-Taik (Department of Applied Chemistry, Andong National University) ;
  • Jeong, Gyo-Cheol (Department of Earth and Environmental Sciences, Andong National University) ;
  • Park, Chang-Kun (Department of Civil Engineering, Kwandong University) ;
  • Park, Jong-Sam (Department of Radiologic Technology, Daegu Health College) ;
  • Kim, Young-Hun (Department of Environmental Engineering, Andong National University)
  • Published : 2007.01.20

Abstract

Large colorless single crystals of sodium zeolite X, stoichiometry |Na80 |[Si112Al80O384]-FAU, with diameters up to 200 μm and Si/Al = 1.41 have been synthesized from gels with the composition of 2.40SiO2 : 2.00NaAlO2 : 7.52NaOH : 454H2O : 5.00TEA. One of these, a colorless octahedron about 200 μm in cross-section has been treated with aqueous 0.1 M KNO3 for the preparation of K+-exchanged zeolite X. The crystal structure of |K80|[Si112Al80O384]-FAU per unit cell, a = 24.838(4) A, dehydrated at 673 K and 1 × 10-6 Torr, has been determined by single-crystal X-ray diffraction techniques in the cubic space group Fd at 294 K. The structure was refined using all intensities to the final error indices (using only the 707 reflections for which Fo > 4σ (Fo)) R1 = 0.075 (based on F) and R2 = 0.236 (based on F2). About 80 K+ ions per unit cell are found at an unusually large number of crystallographically distinct positions, eight. Eleven K+ ions are at the centers of double 6-rings (D6Rs, site I; K-O = 2.492(6) A and O-K-O (octahedral) = 88.45(22)o and 91.55(22)o). Site-I' position (in the sodalite cavities opposite D6Rs) is occupied by five K+ ions per unit cell; these K+ ions are recessed 1.92 A into the sodalite cavities from their 3-oxygen planes (K-O = 2.820(19) A, and O-K-O = 78.6(6)o). Twety-three K+ ions are found at three nonequivalent site II (in the supercage) with occupancies of 5, 9, and 9 ions; these K+ ions are recessed 0.43 A, 0.75 A, and 1.55 A, respectively, into the supercage from the three oxygens to which it is bound (K-O = 2.36(13) A, 2.45(13) A, and 2.710(13) A, O-K-O = 116.5(20)o, 110.1(17)o, and 90.4(6)o, respectively). The remaining sixteen, thirteen, and twelve K+ ions occupy three sites III' near triple 4-rings in the supercage (K-O = 2.64(3) A, 2.94(3) A, 2.73(5) A, 2.96(6) A, 3.06(4) A, and 3.08(3) A).

Keywords

References

  1. Warzywoda, J.; Bac, N.; Sacco Jr., A. J. Crystal Growth 1999, 204, 539-541 https://doi.org/10.1016/S0022-0248(99)00187-6
  2. Ferchiche, S.; Valcheva-Traykova, M.; Vaughan, D. E. W.; Warzywoda, J.; Sacco Jr., A. J. Crystal Growth 2001, 222, 801-805 https://doi.org/10.1016/S0022-0248(00)00979-9
  3. Ferchiche, S.; Warzywoda, J.; Sacco Jr., A. Int. J. Inorg. Mater. 2001, 3, 773-780 https://doi.org/10.1016/S1466-6049(01)00046-0
  4. Jang, S. B.; Kim, M. S.; Han, Y. W.; Kim, Y. Bull. Korean Chem. Soc. 1996, 17(7), 631-647
  5. Smith, J. V. Molecular Sieve Zeolites-I, Advances in Chemistry Series, No. 101; Flanigen, E. M.; Sand, L. B. Eds.; American Chemical Society: Washington, DC, 1971; pp 171-200
  6. Jang, S. B.; Kim, Y. Bull. Korean Chem. Soc. 1995, 16(6), 539-542
  7. Zhu, L.; Seff, K. J. Phys. Chem. B 2000, 104, 8946-8951 https://doi.org/10.1021/jp000710r
  8. Zhu, L.; Seff, K. J. Phys. Chem. B 2001, 105, 12221 https://doi.org/10.1021/jp0133844
  9. Zhu, L.; Seff, K. J. Phys. Chem. B 1999, 103, 9512-9518 https://doi.org/10.1021/jp991817l
  10. Lim, W. T.; Choi, S. Y.; Choi, J. H.; Kim, Y. H.; Heo, N. H.; Seff, K. Micro. Meso. Mater. 2006, 92, 234-242 https://doi.org/10.1016/j.micromeso.2005.11.052
  11. Breck, D. W. Zeolite Molecular Sieves; John Wiley & Son: New York, 1973; pp 92-107
  12. Handbook of Chemistry and Physics, 70th ed.; The Chemical Rubber Co.: Cleveland, OH, 1989/1990; p F-187
  13. Bruker SMART (version 5.0) and SAINT-plus (version 6.0); Bruker AXS Inc.: Madison, Wisconsin, USA, 1999
  14. Sheldrick, G. M. SHELXL97, Program for the Refinement of Crystal Structures; University of Gottingen: Germany, 1997
  15. Doyle, P. A.; Turner, P. S. Acta Crystallogr., Sect. A 1968, 24, 390-397 https://doi.org/10.1107/S0567739468000756
  16. International Tables for X-ray Crystallography; Ibers, J. A., Hamilton, W. C., Eds.; Kynoch Press: Birmingham, England, 1974; Vol. IV, pp 71-98
  17. Cromer, D. T. Acta Crystallogr. 1965, 18, 17-23 https://doi.org/10.1107/S0365110X6500004X
  18. International Tables for X-ray Crystallography; Kynoch Press: Birmingham, England, 1974; Vol. IV, pp 148-150
  19. Choi, E. Y.; Kim, S. Y.; Kim, Y.; Seff, K. Micro. Meso. Mater. 2003, 62, 201-210 https://doi.org/10.1016/S1387-1811(03)00406-2
  20. Kim, S. Y.; Kim, Y.; Seff, K. J. Phys. Chem. B 2003, 107, 6938-6945 https://doi.org/10.1021/jp0214864
  21. Kim, S. Y.; Kim, Y.; Seff, K. J. Phys. Chem. B 2003, 107, 10320 https://doi.org/10.1021/jp030996a
  22. Song, M. K.; Choi, E. Y.; Kim, Y.; Seff, K. J. Phys. Chem. B 2003, 107, 10709-10714 https://doi.org/10.1021/jp022581f
  23. Loewenstein, W. Am. Mineral. 1954, 39, 92-96

Cited by

  1. The dependence of Co2+-exchange into zeolite FAU on its Si/Al ratio vol.21, pp.5, 2014, https://doi.org/10.1007/s10934-014-9836-1
  2. Structural comparison of partially dehydrated partially Co2+-exchanged zeolites X (FAU, Si/Al = 1.40) and Y (FAU, Si/Al = 1.70) vol.23, pp.1, 2016, https://doi.org/10.1007/s10934-015-0059-x
  3. hydration in MeX zeolites (Me = K, Rb, Cs) pp.00207608, 2018, https://doi.org/10.1002/qua.25820
  4. Physical Chemistry Research Articles Published in the Bulletin of the Korean Chemical Society: 2003-2007 vol.29, pp.2, 2008, https://doi.org/10.5012/bkcs.2008.29.2.450
  5. Extraframework cation distributions in X and Y faujasite zeolites: A review vol.114, pp.1, 2008, https://doi.org/10.1016/j.micromeso.2007.12.024