DOI QR코드

DOI QR Code

Synthesis and Properties of PCPP-Based Conjugated Polymers Containing Pendant Carbazole Units for LEDs

  • Jin, Young-Eup (Department of Chemistry, and Chemistry Institute for Functional Materials, Pusan National University) ;
  • Kim, Sun-Hee (Department of Materials Science and Engineering, Gwangju Institute of Science and Technology) ;
  • Lee, Hyo-Jin (Department of Chemistry, and Chemistry Institute for Functional Materials, Pusan National University) ;
  • Song, Su-Hee (Department of Chemistry, and Chemistry Institute for Functional Materials, Pusan National University) ;
  • Kim, Yun-Na (Department of Chemistry, and Chemistry Institute for Functional Materials, Pusan National University) ;
  • Woo, Han-Young (Department of Nanomaterials Engineering, Pusan National University) ;
  • Lee, Kwang-Hee (Department of Materials Science and Engineering, Gwangju Institute of Science and Technology) ;
  • Suh, Hong-Suk (Department of Chemistry, and Chemistry Institute for Functional Materials, Pusan National University)
  • Published : 2007.12.20

Abstract

New poly(cyclopenta[def]phenanthrene) (PCPP)-based conjugated copolymers, containing carbazole units as pendants, were prepared as the electroluminescent (EL) layer in light-emitting diodes (LEDs) to show that most of them have higher maximum brightness and EL efficiency. The prepared polymers, Poly(2,6-(4-(6-(Ncarbazolyl)- hexyl)-4-octyl-4H-cyclopenta[def]phenanthrene)) (CzPCPP10) and Poly(2,6-(4-(6-(N-carbazolyl)- hexyl)-4-octyl-4H-cyclopenta[def]phenanthrene))-co-(2,6-(4,4-dioctyl-4H-cyclopenta[def]phenanthrene)) (CzPCPP7 and CzPCPP5), were soluble in common organic solvents and used as the EL layer in light-emitting diodes (LEDs) of configuration with ITO/PEDOT/polymer/Ca/Al device. The polymers are thermally stable with glass transition temperature (Tg) at 77-100 °C and decomposition temperature (Td) at 423-457 °C. The studies of cyclic voltammetry indicated same HOME levels in all polymers, although the ratios of carbazole units are different. In case of PLEDs with configuration of ITO/PEDOT/CzPCPPs/Ca/Al device, The EL maximum peaks were around 450 nm, which the turn-on voltages were about 6.0-6.5 V. The maximum luminescence of PLEDs using CzPCPP10 was over 4400 cd/m2 at 6.5 V, which all of the maximum EL efficiency were 0.12 cd/A. The CIE coordinates of the EL spectrum of PLEDs using CzPCPP10 was (0.18, 0.08), which are quite close to that of the standard blue (0.14, 0.08) of NTSC.

Keywords

References

  1. Friend, R. H.; Gymer, R. W.; Holmes, A. B.; Burroughes, J. H.; Marks, R. N.; Taliani, D.; Bradley, D. D. C.; Santos, D. A.; Bredas, J. L.; Logdlund, M.; Salaneck, W. R. Nature (London) 1999, 397, 121 https://doi.org/10.1038/16393
  2. Huang, F.; Hou, L.; Wu, H.; Wang, X.; Shen, H.; Cao, W.; Yang, W.; Cao, Y. J. Am. Chem. Soc. 2004, 126, 9845 https://doi.org/10.1021/ja0476765
  3. Ma, W.; Gong, X.; Liu, B.; Moses, D.; Bazan, G. C.; Heeger, A. J. Adv. Mater. 2005, 17, 274 https://doi.org/10.1002/adma.200400963
  4. Yang, C.; Scheiber, H.; List, E. J. W.; Jacob, J.; Mullen, K. Macromolecules 2006, 39, 5213 https://doi.org/10.1021/ma061007p
  5. Jin, Y.; Jee, J.; Kim, K.; Kim, J.; Song, S.; Park, S. H.; Lee, K.; Suh, H. Polymer 2007, 48, 1541 https://doi.org/10.1016/j.polymer.2007.01.060
  6. Jin, Y.; Kim, J.; Song, S.; Park, S. H.; Lee, K.; Suh, H. Bull. Korean Chem. Soc. 2005, 26, 855 https://doi.org/10.5012/bkcs.2005.26.5.855
  7. Jin, Y.; Kim, J.; Park, S. H.; Lee, K.; Suh, H. Bull. Korean Chem. Soc. 2005, 26, 795 https://doi.org/10.5012/bkcs.2005.26.5.795
  8. Burroughes, J. H.; Bradley, D. D. C.; Brown, A. R.; Marks, R. N.; Mackay, K.; Friend, R. H.; Burn, P. L.; Holmes, A. B. Nature (London) 1990, 347, 539 https://doi.org/10.1038/347539a0
  9. Brown, D.; Heeger, A. J. Appl. Phys. Lett. 1991, 58, 1982 https://doi.org/10.1063/1.105039
  10. Jin, Y.; Kim, J.; Park, S. H.; Kim, H.; Lee, K.; Suh, H. Bull. Korean Chem. Soc. 2005, 26, 1807 https://doi.org/10.5012/bkcs.2005.26.11.1807
  11. Jin, Y.; Kim, K.; Song, S.; Kim, J.; Kim, J.; Park, S. H.; Lee, K.; Suh, H. Bull. Korean Chem. Soc. 2006, 27, 1043 https://doi.org/10.5012/bkcs.2006.27.7.1043
  12. Grell, M.; Bradley, D. D. C.; Inbasekaran, M.; Woo, E. P. Adv. Mater. 1997, 9, 798 https://doi.org/10.1002/adma.19970091006
  13. Ranger, M.; Rondeau, D.; Leclerc, M. Macromolecules 1997, 30, 7686 https://doi.org/10.1021/ma970920a
  14. Pei, Q.; Yang, Y. J. Am. Chem. Soc. 1996, 118, 7416 https://doi.org/10.1021/ja9615233
  15. List, E. J. W.; Guentner, R.; de Freitas, P. S.; Sherf, U. Adv. Mater. 2002, 14, 374 https://doi.org/10.1002/1521-4095(20020304)14:5<374::AID-ADMA374>3.0.CO;2-U
  16. Sherf, U.; List, E. J. W. Adv. Mater. 2002, 14, 477 https://doi.org/10.1002/1521-4095(20020404)14:7<477::AID-ADMA477>3.0.CO;2-9
  17. Stampfl, J.; Graupnera, W.; Leising, G.; Scherf, U. J. Lumin. 1995, 63, 117 https://doi.org/10.1016/0022-2313(94)00058-K
  18. Silva, C.; Stevens, M. A.; Russell, D. M.; Setayesh, S.; Mullen, K.; Friend, R. H. Synth. Met. 2001, 116, 9 https://doi.org/10.1016/S0379-6779(00)00504-X
  19. Suh, H.; Jin, Y.; Park, S. H.; Kim, D.; Kim, J.; Kim, C.; Kim, J. Y.; Lee, K. Macromolecules 2005, 38, 6285 https://doi.org/10.1021/ma050812l
  20. Yang, C.; Jacob, J.; Mullen, K. Macromolecules 2006, 39, 5696 https://doi.org/10.1021/ma060722w
  21. Boardman, F. H.; Grice, A. W.; Ruther, M. G.; Sheldon, T. J.; Bradley, D. D. C.; Burn, P. L. Macromolecules 1999, 32, 111 https://doi.org/10.1021/ma981309u
  22. Jin, Y.; Ju, J.; Kim, J.; Lee, S.; Kim, J. Y.; Park, S. H.; Son, S. M.; Jin, S. H.; Lee, K.; Suh, H. Macromolecules 2003, 36, 6970 https://doi.org/10.1021/ma025862u
  23. Jin, Y.; Kim, J.; Lee, S.; Kim, J. Y.; Park, S. H.; Lee, K.; Suh, H. Macromolecules 2004, 37, 6711 https://doi.org/10.1021/ma0493022
  24. Jin, J. I.; Kim, J. C.; Shim, H. K. Macromolecules 1992, 25, 5519 https://doi.org/10.1021/ma00046a060
  25. Burn, P. L.; Grice, A. W.; Tajbakhsh, A.; Bradley, D. D. C.; Thomas, A. C. Adv. Mater. 1997, 9, 1171 https://doi.org/10.1002/adma.19970091510
  26. Lee, Y. Z.; Chen, S. A. Synth. Met. 1999, 105, 185 https://doi.org/10.1016/S0379-6779(99)00099-5
  27. Winkler, B.; Meghdadi, F.; Tasch, S.; Ever, B.; Schneider, I.; Fischer, W.; Stelzer, F.; Leising, G. Synth. Met. 1999, 102, 1083 https://doi.org/10.1016/S0379-6779(98)01374-5
  28. Lee, Y. Z.; Chen, X.; Chen, S. A.; Wei, P. K.; Fann, W. S. J. Am. Chem. Soc. 2001, 123, 2296 https://doi.org/10.1021/ja003135d
  29. Kang, H. S.; Kim, K. H.; Kim, M. S.; Park, K. T.; Kim, K. M.; Lee, T. H.; Lee, C. Y.; Joo, J.; Lee, D. W.; Hong, Y. R.; Kim, K.; Lee, G. J.; Jin, J. I. Synth. Met. 2002, 130, 279 https://doi.org/10.1016/S0379-6779(02)00126-1
  30. Jin, Y.; Kim, J. Y.; Park, S. H.; Kim, J.; Lee, S.; Lee, K.; Suh, H. Polymer 2005, 46, 12158 https://doi.org/10.1016/j.polymer.2005.10.080
  31. Mitsuo, K.; Hiroaki, S.; Suehiko, Y. J. Org. Chem. 1988, 53, 2093 https://doi.org/10.1021/jo00244a046
  32. Pommerehne, J.; Vestweber, H.; Guss, W.; Mahrt, R. F.; Bassler, H.; Porsch, M.; Daub, J. Adv. Mater. 1995, 7, 551 https://doi.org/10.1002/adma.19950070608

Cited by

  1. White Electroluminescence from Bicarbazyl-containing Conjugated Polymers as Single-Emitting Component vol.29, pp.1, 2007, https://doi.org/10.5012/bkcs.2008.29.1.135
  2. Poly(p-phenylenevinylene)s Derivatives Containing a New Electron-Withdrawing CF3F4Phenyl Group for LEDs vol.29, pp.1, 2008, https://doi.org/10.5012/bkcs.2008.29.1.139