DOI QR코드

DOI QR Code

Phase Behavior and Spontaneous Vesicle Formation in Aqueous Solutions of Anionic Ammonium Dodecyl Sulfate and Cationic Octadecyl Trimethyl Ammonium Chloride Surfactants

  • Kang, Kye-Hong (Department of Chemical Engineering, Chung-Ang University) ;
  • Kim, Hong-Un (Department of Chemical Engineering, Chung-Ang University) ;
  • Lim, Kyung-Hee (Department of Chemical Engineering, Chung-Ang University)
  • Published : 2007.04.20

Abstract

Phase behavior for the mixed aqueous surfactant systems of cationic octadecyl trimethyl ammonium chloride (OTAC)/anionic ammonium dodecyl sulfate (ADS)/water was examined. Below the total surfactant concentrations of 1.5 m molal, mixed micelles were formed. At the total surfactant concentrations higher than 1.5 m molal, there appeared a region where mixed micelles and vesicles coexist. As the surfactant concentration increased, the systems looked very turbid and much more vesicles were observed. The vesicles were spontaneously formed in this system and their existence was observed by negative-staining transmission electron microscopy (TEM), small-angle neutron scattering (SANS) and encapsulation efficiency of dye. The vesicle region was where the molar fraction α of ADS to the total mixed surfactant was from 0.1 to 0.7 and the total surfactant concentration was above 5 × 10-4 molality. The size and structure of the vesicles were determined from the TEM microphotographs and the SANS data. Their diameter ranged from 450 nm to 120μm and decreased with increasing total surfactant concentration. The lamellar thickness also decreased from 15 nm to 5 nm with increasing surfactant concentration and this may be responsible for the decrease in vesicle size with the surfactant concentration. The stability of vesicles was examined by UV spectroscopy and zeta potentiometry. The vesicles displayed long-term stability, as UV absorbance spectra remained unchanged over two months. The zeta potentials of the vesicles were large in magnitude (40-70 mV) and the observed longterm stability of the vesicles may be attributed to such high ζ potentials.

Keywords

References

  1. Holland, P. M.; Roubingh, D. N. Mixed Surfactant Systems; Am. Chem. Soc.: Washington, DC, 1992
  2. Ogino,K.; Abe, M. Mixed Surfactant Systems; Marcel Dekker: New York, 1993
  3. Lucassen-Reynders, E. H.; Lucassen, J.; Giles, D. J. Colloid Interface Sci. 1989, 81, 150
  4. Yu, Z. J.; Zhao, G. X. J. Colloid Interface Sci. 1989, 130, 414 https://doi.org/10.1016/0021-9797(89)90118-5
  5. Kaler, E. W.; Murthy, A. K.; Rodriguez, B. E.; Zasadzinski, J. A. Science 1989, 245, 1371 https://doi.org/10.1126/science.2781283
  6. Uchegbu, I. F.; Vyas, S. P. Int. J. Pharm. 1998, 172, 33 https://doi.org/10.1016/S0378-5173(98)00169-0
  7. Fendler, J. H. Membrene Mimetic Approach to Advanced Materials; Spriner-Verlag: Berlin, 1992
  8. Yu, W. L.; Pei, J.; Huang, W.; Zhao, G. X. Mater. Chem. Phys. 1997, 49, 87 https://doi.org/10.1016/S0254-0584(97)80134-4
  9. Yaacob, I. I.; Nunes, A. C.; Bose, A. J. Colloid Interface Sci. 1995, 171, 73 https://doi.org/10.1006/jcis.1995.1152
  10. Kaler, E. W.; Herrington, K. L.; Murthy, K. A.; Zasadzinski, J. A. J. Phy. Chem. 1992, 89, 6698
  11. Chiruvolu, S.; Istraelachvili, J. N.; Naranjo, E.; Xu, Z.; Zasadzinski, J. A. Langmuir 1995, 11, 4256 https://doi.org/10.1021/la00011a016
  12. Herrington, K. L.; Kaler, E. W.; Miller, D. D.; Zasadzinski, J. A.; Chiruvolu, S. J. Phys. Chem. 1993, 97, 13792 https://doi.org/10.1021/j100153a058
  13. Bergstrom, M.; Pedersen, J. S. Langmuir 1998, 14, 3754 https://doi.org/10.1021/la980107o
  14. Blankschtein, D.; Yuet, P. K. Langmuir 1996, 12, 3819 https://doi.org/10.1021/la960321h
  15. Yatcilla, M. T.; Herrington, K. L.; Brasher, L. L.; Kaler, E. W.; Chiruvolu, S.; Zasadzinski, J. A. J. Phys. Chem. 1996, 100, 5874 https://doi.org/10.1021/jp952425r
  16. Marques, E.; Khan, A.; da Gracia Miguel, M.; Lindmann, B. J. Phys. Chem. 1993, 97, 4729 https://doi.org/10.1021/j100120a028
  17. Kondo, Y.; Uchiyama, H.; Yoshino, N.; Nishiyama, K.; Abe, M. Langmuir 1995, 11, 2380 https://doi.org/10.1021/la00007a011
  18. Allardice, A.; Gummo, G. Cosmetics and Toiletries 1988, 103, 107
  19. Jurczyk, M. F.; Berger, D. R.; Damaso, G. R. Cosmetics and Toiletries 1991, 106, 63
  20. Kekicheff, P.; Grabielle-Madelmont, C.; Ollivon, M. J. Colloid Interface Sci. 1989, 131, 112
  21. Kekicheff, P. J. Colloid Interface Sci. 1989, 131, 133 https://doi.org/10.1016/0021-9797(89)90152-5
  22. Kurz, J. L. J. Phys. Chem. 1962, 66, 2239 https://doi.org/10.1021/j100817a039
  23. Muramatsu, C.; Inoue, M. J. Colloid Interface Sci. 1976, 55, 80 https://doi.org/10.1016/0021-9797(76)90011-4
  24. Rosen, M. J. Surfactants and Interfacial Phenomena, 2nd ed.; John Wiley & Sons: New York, 1989; pp 14-15
  25. Porter, M. R. Handbook of Surfactants; Chapman and Hall: New York, 1991; pp 70-73
  26. Fox, C. Cosmetics and Toiletries 1988, 103, 25
  27. Hunting, A. L. Encyclopedia of Shampoo Ingredients; Micelle Press: London, 1983
  28. Kang, K.-H.; Kim, H.-U.; Lim, K.-H.; Jeong, N.-H. Bull. Korean Chem. Soc. 2001, 22, 1009
  29. Armarego, W. L. F.; Perrin, D. D. Purification of Laboratory Chemicals, 4th ed.; Butterworth Heinemann: Singapore, 1996
  30. Kunitake, T.; Okahata,U. J. Am. Chem. Soc. 1980, 102, 549 https://doi.org/10.1021/ja00522a019
  31. Zhao, G.-X.; Yu, W.-L. J. Colloid Interface Sci. 1995, 173, 159
  32. Pedersen, J. S.; Egelhaaf, S. U.; Schurtenberger, P. J. Phys. Chem. 1995, 99, 1299 https://doi.org/10.1021/j100004a033
  33. Laughlin, R. G. The Aqueous Phase Behavior of Surfactants; Academic Press: London, 1994; p 472
  34. Kang, K.-H.; Kim, H.-U.; Lim, K.-H. Colloid Surf. A 2001, 189, 113
  35. Porod, G. In Small-Angle X-ray Scattering; Glatter, O.; Kratky, O., Eds.; Academic Press: New York, 1982; p 17
  36. Debye, P. J. Phys. Chem. 1947, 51, 18 https://doi.org/10.1021/j150451a002
  37. Debye, P. J. Phys. Chem. 1949, 53, 1 https://doi.org/10.1021/j150466a001
  38. Roe, R.-J. Methods of X-ray and Neutron Scattering in Polymer Science; Oxford University Press: New York, 2000; pp 155-209
  39. Tanford, C. J. Phys. Chem. 1974, 78, 2469 https://doi.org/10.1021/j100617a012
  40. Evans, D. F.; Wennerstrom, H. Colloidal Domain: Where Physics, Chemistry, Biology, and Technology Meet; VCH Publishers Inc.: 1994; pp 68-69
  41. Istraelachvili, J. N. Intermolecular and Surface Forces, 2nd ed.; Academic Press: San Diego, 1992; p 381
  42. Kim, H.-U. Ph. D. Dissertation, Chung-Ang University, Seoul, 2002
  43. Guinier, A.; Fournet, G. Small-Angle Scattering of X-Ray; John Wiley & Sons: New York, 1955
  44. Feigin, L. A.; Svergun, D. I. In Structure Analysis by Small-Angle X-Ray and Neutron Scattering; Talyor G. W., Ed.; Plenum Press: London, 1987; pp 68-69
  45. Salkar, R. A.; Mukesh, D.; Samant, S. D.; Manohar, C. Langmuir 1998, 14, 3778 https://doi.org/10.1021/la971024v
  46. Evans, D. F.; Ninham, B. W. J. Phys. Chem. 1986, 90, 226 https://doi.org/10.1021/j100274a005
  47. Iampietro, D. J.; Kaler, E. W. Langmuir 1999, 15, 8590 https://doi.org/10.1021/la990407l
  48. Ma, G.; Barlow, D. J.; Lawrence, M. J.; Heenan, R. K.; Timmins, P. J. Phys. Chem. B 2000, 104, 9081 https://doi.org/10.1021/jp000934+

Cited by

  1. Anticancer Cationic Ruthenium Nanovectors: From Rational Molecular Design to Cellular Uptake and Bioactivity vol.14, pp.8, 2013, https://doi.org/10.1021/bm400104b
  2. -Alkanoyl)-L-alaninate and N-Cetylpyridinium Chloride: Effect of Hydrocarbon Chain Length vol.54, pp.7, 2015, https://doi.org/10.1021/ie503697c
  3. Effect of Hydrocarbon Chain and Amide Linkage on the Interfacial and Self-Assembly Properties of Nicotinic Acid Amphiphiles vol.60, pp.8, 2015, https://doi.org/10.1021/je501051p
  4. Preparation and Characterization of Vesicles Using Octasubstituted Cyclotetraphosphazene vol.29, pp.10, 2007, https://doi.org/10.5012/bkcs.2008.29.10.2005
  5. Poly(benzyl-L-histidine)-b-Poly(ethylene glycol) Micelle Engineered for Tumor Acidic pH-Targeting, in vitro Evaluation vol.29, pp.8, 2007, https://doi.org/10.5012/bkcs.2008.29.8.1539