Synthesis of Isochroman and Tetrahydroisoquinoline Derivatives from Baylis-Hillman Adducts by Radical Cyclization

Saravanan Gowrisankar, Hyun Seung Lee, and Jae Nyoung Kim*
Departnent of Chemistry and Institute of Basic Science, Chonnam National University, Gwangiu 500-757, Korea
*E-mail: kimjn@chonnam.ackr
Received August 27, 2007

Key Words : Isochroman, Tetrahydroisoquinoline, Baylis-IIilman adducts, Radical cyclization

Recently we were interested in radical cyclizations of modified Baylis-Hillman adducts. ${ }^{12}$ We reported the synthesis of various heterocyclic compounds ${ }^{1}$ including 2,3dihydrobenzofuran derivatives using radical cyclization process. ${ }^{2}$ Meantime we reasoned that six-membered heterocyclic compounds such as isochroman ${ }^{3}$ and tetrahydroisoquinoline ${ }^{+}$derivatives could be prepared by radical cyclization from suitably modified Baylis-Hillman adducts (vide infra, Scheme 1).
Isochroman and tetrahydroisoquinoline derivatives are important backbone in many biologically interesting substances and their synthesis have been studied extensively. ${ }^{3-5}$ Especially, appropriately substituted tetrahydroisoquinolines are an important class of natural and synthetic compounds, which exhibit various biological activities including antitumor, antibacterial, antiplasmodial and β-adrenergic receptor antagonism. ${ }^{\text {4. }}$

As an initial trial we examined the synthesis of isochroman derivative 4a as shown in Scheme 1. The starting material 3a was synthesized from the reaction of BaylisHillman acetate 1a and 2-bromobenzyl alcohol (2a) in good yield (82%). With this compound 3a in our hand we examined the radical cyclization under the influence of n $\mathrm{Bu}_{3} \mathrm{SnH} / \mathrm{AIBN}$ in benzene and we obtained desired 4,4disubstituted isochroman derivative 4a in 89% yield (Scheme 1). We did not observe the formation of sevenmembered ring compound or reduction product. Most of the radical cyclizations of aryl radical toward tethered unsaturated ester occurred at the β-position of unsaturated moiety. ${ }^{6}$ However, we observed the selective formation of sixmembered ring compound 4a presumably due to the special stability of the intermediate benzylic radical as in our previous synthesis of 2,3-dihydrobenzofuran. ${ }^{2}$ Encouraged by the results we prepared starting materials 3b-f (vide infiva. Table 1 and Scheme 2) and carried out radical cyclizations
under the same conditions, and the results are summarized in Table 1.

As shown we prepared three isochroman derivatives 4a-c (entries 1-3) and two tetrahydroisoquinolines $4 \mathbf{d}$ and 4 e (entries 4 and 5) in good yields ($85-89 \%$). However, unfortunately, radical cyclization was not completed in the case of nitrile derivative 3 If and we isolated isochroman $4 \boldsymbol{f}$ and reduction compound 5 together ($1: 1$ mixture based on ${ }^{1} \mathrm{H}$ NMR) as a mixture. The separation of 41 and 5 was very difficult by column chromatography due to their same mobility on TLC. At this stage the reason for low yield of cyclized compound $\mathbf{4 f}$ is not clear.
Synthesis of starting materials 3a-e required somewhat different synthetic approaches depending upon the substrates as shown in Scheme 2. Synthesis of 3a and 3b was carried out by the reaction of Baylis-Hillman acetate 1a and 2bromobenzyl alcohol (2a) in the presence of $\mathrm{K}_{2} \mathrm{CO}_{3}$ in acetonitrile ($79-82 \%$). The compound 3 c was synthesized from cinnamyl alcohol $\mathbf{1 b}^{7}$ and 5-bromo-6-bromomethyl-1,3-benzodioxole (2b) in moderate yield (56%) by using potassium tert-butoxide in DMF. The compounds 3d and 3e were prepared from the reaction of rearranged $a z a$-BaylisHillman adduct $1 \mathrm{c}^{7}$ and 2 b or 2-bromobenzyl bromide (2c) in the presence of $\mathrm{K}_{2} \mathrm{CO}_{3}$ in DMF in good yields ($81-91 \%$). Nitrile derivative $\mathbf{3 f}$ was prepared by the reaction of $\mathbf{2 a}$ and the corresponding Baylis-Hillman acetate in 79% yield by following the same procedure for the synthesis of $\mathbf{3 a}$.

In summary, we disclosed the synthesis of some isochroman and tetrahydroisoquinoline derivatives by the radical cyclization process starting from the Baylis-Hillman adducts.

Experimental Section

Typical procedure for the synthesis of 3a. To a stirred solution of Baylis-Hillman acetate (1a, $200 \mathrm{mg}, 0.85 \mathrm{mmol}$)

Scheme 1

Table 1. Synthesis of isochroman and tetrahydroisoquinoline derivatives
Entry
 NMR spectrum.

Scheme 2
and $2 \mathbf{a}(239 \mathrm{mg}, 1.28 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(3 \mathrm{~mL})$ was added $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($177 \mathrm{mg}, 1.28 \mathrm{mmol}$), and the reaction mixture was stirred for 8 h at $50-60^{\circ} \mathrm{C}$. After the normal aqueous workup and column chromatographic purification process (hexanes/ $\mathrm{EtOAc}=15: 1$) we obtained 3a as colorless oil, 251 mg (82%). Synthesis of compounds 3b, 3d, 3e and 3f was carried out similarly and the spectroscopic data are as follows.
Compound 3a: colorless oil; 82\%; \mathbb{R} (film) 3518,2953 , $1732,1232 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 3.84(\mathrm{~s}$, $3 \mathrm{H}), 4.41(\mathrm{~s}, 2 \mathrm{H}), 4.70(\mathrm{~s}, 2 \mathrm{H}), 7.12-7.18(\mathrm{~m}, 1 \mathrm{H}), 7.28-7.33$ $(\mathrm{m}, 1 \mathrm{H}), 7.36-7.39(\mathrm{~m}, 3 \mathrm{H}), 7.51-7.57(\mathrm{~m}, 4 \mathrm{H}), 7.96(\mathrm{~s}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 52.17,64.86,72.21,123.07$, $127.37,128.42,128.52,129.07,129.37,129.78,129.85$, $132.53,134.62,137.37,144.97,168.02$; ESIMS $m / z 361$ $\left(\mathrm{M}^{+}+1\right)$. Anal Calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{BrO}_{3}: \mathrm{C}, 59.85 ; \mathrm{H}, 4.74$. Found: C, $60.13 ; \mathrm{H}, 4.55$.
Compound 3b: colorless oil; 79\%; IR (film) 3521, 2952, $1747,1230 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 2.37(\mathrm{~s}$, $3 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 4.42(\mathrm{~s}, 2 \mathrm{H}), 4.71(\mathrm{~s}, 2 \mathrm{H}), 7.12-7.16(\mathrm{~m}$, $1 \mathrm{H}), 7.17-7.20(\mathrm{~m}, 2 \mathrm{H}), 7.28-7.33(\mathrm{~m}, 1 \mathrm{H}), 7.45-7.48(\mathrm{~m}$, $2 \mathrm{H}), 7.52-7.57(\mathrm{~m}, 2 \mathrm{H}), 7.94(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75\right.$ MHz) $\delta 21.40,52.14,64.99,72.17,123.08,127.39,127.48$, $129.05,129.31,129.79,130.02,131.84,132.54,137.46$, $139.78,145.17,168.21$; ESIMS $m / z 375\left(\mathrm{M}^{+}+1\right)$.
Compound 3d: colorless oil; 91%; IR (film) 2958, 1705, $1344,1244 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 2.43$ (s, $3 \mathrm{H}), 3.56(\mathrm{~s}, 3 \mathrm{H}), 4.37(\mathrm{~s}, 2 \mathrm{H}), 4.38(\mathrm{~s}, 2 \mathrm{H}), 6.99-7.04(\mathrm{~m}$, $1 \mathrm{H}), 7.12-7.16(\mathrm{~m}, 1 \mathrm{H}), 7.29(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.34-7.49$ (m, 7 H), $7.64(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.67(\mathrm{~s}, 1 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 21.47,45.08,51.97,52.13,122.15$, $126.39,127.19,127.41,128.48,128.50,129.19,129.27$, $129.64,129.72,132.21,133.90,135.71,136.07,143.45$, 144.41, 167.41; ESIMS $m / z 514\left(\mathrm{M}^{+}+1\right)$. Anal Caled for $\mathrm{C}_{2}: \mathrm{H}_{24} \mathrm{BrNO}_{4} \mathrm{~S}: \mathrm{C}, 58.37$; H, $4.70 ; \mathrm{N}, 2.72$. Found: C, 58.12 ; H, 4.95; N, 2.58 .
Compound 3e: colorless oil; 81%; \mathbb{R} (film) 2925,1714 , $1479,1238 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 2.44$ (s, $3 \mathrm{H}), 3.62(\mathrm{~s}, 3 \mathrm{H}), 4.25(\mathrm{~s}, 2 \mathrm{H}), 4.36(\mathrm{~s}, 2 \mathrm{H}), 5.89(\mathrm{~s}, 2 \mathrm{H})$, $6.83,(\mathrm{~s}, 1 \mathrm{H}), 6.96(\mathrm{~s}, 1 \mathrm{H}), 7.28-7.35(\mathrm{~m}, 7 \mathrm{H}), 7.65-7.68(\mathrm{~m}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 21.48,44.78,51.81$, $52.01,101.58,109.35,112.11,112.50,126.34,127.41$, $128.46,129.11,129.31,129.64,129.69,133.90,135.76$, $143.46,144.33,147.36,167.40$ and one carbon is overlapped; ESIMS $m / z 558\left(\mathrm{M}^{+}+1\right)$.

Compound 3f: colorless oil; 79\%; IR (film) 3492, 3062, $2864,2214,1228 \mathrm{~cm}^{-1}$; 'H NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 4.33$ $(\mathrm{s}, 2 \mathrm{H}), 4.69(\mathrm{~s}, 2 \mathrm{H}), 7.13-7.21(\mathrm{~m}, 2 \mathrm{H}), 7.28-7.36(\mathrm{~m}, 1 \mathrm{H})$, 7.39-7.44 (m, 3H), 7.51-7.58 (m, 2H), 7.75-7.79 (m, 2H); ${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 71.68,71.84,107.89,117.62$, $122.84,127.57,128.87,129.02,129.32,129.36,130.67$, $132.62,132.92,136.58,145.12$; ESIMS $m / z 328\left(\mathrm{M}^{+}+1\right)$.
Typical procedure for the synthesis of 3c. To a stirred mixture of $\mathbf{1 b}(40 \mathrm{mg}, 0.21 \mathrm{mmol})$ and $\mathbf{2 b}(67 \mathrm{mg}, 0.23$ mmol) in DMF (0.5 mL) was added $t-\mathrm{BuOK}(26 \mathrm{mg}, 0.23$ mmol) at $-10^{\circ} \mathrm{C}$, and the reaction mixture was stirred at around $0^{\circ} \mathrm{C}$ for 2 h . After the usual aqueous workup and
column chromatographic purification process (hexanes/ $\mathrm{EtOAc}=15: 1)$ we obtained 3 c as colorless oil, $48 \mathrm{mg}(56 \%)$. Spectroscopic data of compound 3 c are as follows.

Compound 3c: colorless oil; 56%; IR (film) 2949, 2895, $1714,1236 \mathrm{~cm}^{-1}$; 'H NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 3.85(\mathrm{~s}$, $3 \mathrm{H}), 4.37(\mathrm{~s}, 2 \mathrm{H}), 4.60(\mathrm{~s}, 2 \mathrm{H}), 5.96(\mathrm{~s}, 2 \mathrm{H}), 7.00(\mathrm{~s}, 1 \mathrm{H})$, $7.02(\mathrm{~s}, 1 \mathrm{H}), 7.37-7.39(\mathrm{~m}, 3 \mathrm{H}), 7.51-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.95(\mathrm{~s}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 52.17,64.67,72.08$, $101.67,109.78,112.56,113.59,128.38,128.51,129.38$, $129.84,130.58,134.61,144.96,147.38,147.79,167.98$; ESIMS $m / z 405\left(\mathrm{M}^{+}+1\right)$.
Typical procedure for the synthesis of 4a. A stirred mixture of $3 \mathrm{a}(80 \mathrm{mg}, 0.22 \mathrm{mmol}), n-\mathrm{Bu}_{3} \mathrm{SnH}(97 \mathrm{mg}, 0.33$ mmol), AIBN (cat) in benzene (5 mL) was heated to reflux for 12 h . After removal of solvent and column chromatographic purification process (hexanes/EtOAc, 15:1) we obtained 4 a as colorless oil, $55 \mathrm{mg}(89 \%)$.

Compound 4a: colorless oil; 89%; IR (film) 2950,1734 , $1256 \mathrm{~cm}^{-1} ;{ }^{\prime} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 3.16(\mathrm{~d}, J=13.5$ $\mathrm{Hz}, 1 \mathrm{H}), 3.50(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 3.90(\mathrm{~d}, J=$ $11.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.13(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.81(\mathrm{~d}, J=0.6 \mathrm{~Hz}$, $2 \mathrm{H}), 6.99-7.03(\mathrm{~m}, 1 \mathrm{H}), 7.13-7.16(\mathrm{~m}, 2 \mathrm{H}), 7.17-7.26(\mathrm{~m}$, $5 \mathrm{H}), 7.52-7.56(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta 43.48$, $50.08,52.10,68.71,69.11,124.39,126.63,126.68,127.08$, $127.78,128.10,130.43,133.92,135.16,138.81,173.46$; ESIMS $m / z 283\left(\mathrm{M}^{+}+1\right)$. Anal Calcd for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{3}: \mathrm{C}, 76.57$; H, 6.43. Found: C, 76.43; H, 6.61.

Compound 4b: colorless oil; 85%; IR (film) 2952, 1731, $1255 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 2.30(\mathrm{~s}, 3 \mathrm{H}), 3.11$ (d, $J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.46(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H})$, $3.90(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.80(\mathrm{~d}$, $J=0.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.99-7.00(\mathrm{~m}, 1 \mathrm{H}), 7.05(\mathrm{~s}, 4 \mathrm{H}), 7.19-7.25$ $\left.(\mathrm{m}, 2 \mathrm{H}), 7.56-7.59(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(CDCl}_{3}, 75 \mathrm{MHz}\right) \delta$ $20.98,43.07,49.98,52.04,68.69,69.06,124.33,126.60$, $127.01,127.76,128.80,130.24,133.59,133.92,135.20$, 136.17, 173.47; ESIMS $m / z 297\left(\mathrm{M}^{+}+1\right)$.

Compound 4e: colorless oil; 88%; IR (film) 2951, 1728, $1484,1240 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 3.10(\mathrm{~d}, J=$ $13.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.44(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 3.84$ $(\mathrm{d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.65(\mathrm{~d}, J=$ $15.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.72(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.92(\mathrm{~d}, J=1.2 \mathrm{~Hz}$, $1 \mathrm{H}), 5.95(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.45(\mathrm{~s}, 1 \mathrm{H}), 7.06(\mathrm{~s}, 1 \mathrm{H})$, 7.13-7.16 (m, 2H), 7.19-7.28 (m, 3H); ${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75\right.$ $\mathrm{MHz}) \delta 43.64,49.95,52.17,68.84,69.19,101.00,104.17$, $107.98,126.76,127.66,128.17,128.20,130.36,136.72$, $146.41,146.75,173.58$; ESIMS $m / z 327\left(\mathrm{M}^{+}+1\right)$.

Compound 4d: colorless oil; 86%; IR (film) 2954, 1733, $1159 \mathrm{~cm}^{-1}$; 'H NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 2.42(\mathrm{~s}, 3 \mathrm{H}), 3.30$ $(\mathrm{d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.31(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.44(\mathrm{~d}, J=$ $13.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.62(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 3.93$ $(\mathrm{d}, J=14.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{~d}, J=14.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.02-7.05(\mathrm{~m}$, $1 \mathrm{H}), 7.14-7.28(\mathrm{~m}, 7 \mathrm{H}), 7.34(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.47-7.50$ $(\mathrm{m}, 1 \mathrm{H}), 7.71(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75\right.$ $\mathrm{MHz}) \delta 21.51,44.25,48.62,49.14,52.05,52.25,126.47$, $126.79,126.86,127.37,128.03$ (2C), 128.61, 129.73, $130.89,131.26,132.14,134.38,136.21,143.94,173.01$; ESIMS $m / z 436\left(\mathrm{M}^{+}+1\right)$. Anal Calce for $\mathrm{C}_{25} \mathrm{H}_{2} \mathrm{NO}_{4} \mathrm{~S}: \mathrm{C}$,
$68.94 ; \mathrm{H}, 5.79 ; \mathrm{N}, 3.22$. Found: C, $68.75 ; \mathrm{H}, 5.88 ; \mathrm{N}, 3.15$.
Compound 4e: colorless oil; 89%; R (film) 2924, 1730, $1487,1242 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 2.43(\mathrm{~s}$, $3 \mathrm{H}), 3.24(\mathrm{~d}, J=13.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.25(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H})$, $3.39(\mathrm{~d}, J=13.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.54(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.64$ (s, $3 \mathrm{H}), 3.83(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H})$, $5.89(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.93(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.46(\mathrm{~s}$, $1 \mathrm{H}), 7.01(\mathrm{~s}, 1 \mathrm{H}), 7.22-7.24(\mathrm{~m}, 5 \mathrm{H}), 7.34(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $2 \mathrm{H}), 7.69(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right) \delta$ $21.50,44.38,48.69,49.02,51.91,52.26,101.19,105.86$, $108.41,124.89,126.93,127.69,128.02,128.09,129.73$, $130.81,132.14,136.12,143.95,146.62,146.96,173.05$; ESIMS $m / z 480\left(\mathrm{M}^{+}+1\right)$.
Compound 4 f and compound 5 were not separated, however, we could assign their ${ }^{1} \mathrm{H}$ NMR data as follows: Compound 4f: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 3.18(\mathrm{~d}, J=$ $12.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.23(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~d}, J=11.4 \mathrm{~Hz}$, $1 \mathrm{H}), 4.11(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.88(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H})$, $4.90(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-7.79(\mathrm{~m}, 9 \mathrm{H})$; Compound 5 : ${ }^{\prime} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 4.26(\mathrm{~s}, 2 \mathrm{H}), 4.63(\mathrm{~s}, 2 \mathrm{H})$, $7.17(\mathrm{~s}, 1 \mathrm{H}), 7.74-7.79(\mathrm{~m}, 10 \mathrm{H})$.
Acknowledgments. This work was supported by the Korea Research Foundation Grant funded by the Korean Government (MOEHRD, KRF-2006-311-C00384). Spectroscopic data was obtained from the Korea Basic Science Institute, Gwangju branch.

References and Notes

1. For our recent papers on the radical cyclizations using modiffed Baylis-Hillman adducts, see: (a) Gowrisankar, S.; Kim, S. J.; Lee, J.-E.; Kim, J. N. Tetrahedron Leff. 2007, 48, 4419-4422. (b) Gowrisankar, S.; Lee, H. S.; Kim, J. N. Tetrahedron Leff. 2007, 48, 3105-3108. (c) Gowrisankar, S.; Lee, K. Y.; Kim, T. H.; Kim, J. N. Tetrahedron Lett. 2006, 47, 5785-5788. (d) Gowrisankar, S.; Lee, H. S.; Kim, J. N. Bull. Korean Chem. Soc. 2006, 27, 2097-2100. (e) Gowrisankar, S.; Lee, K. Y.; Kim, J. N. Bull. Korean Chem. Soc. 2006, 27, 929-932. (f) Gowrisankar, S.; Lee, K. Y.; Kim, J. N. Tetrahedron Lett. 2005, 46, 4859-4863.
2. Park, D. Y.; Gowrisankar, S., Kim, J. N. Bull. Korean Chem. Soc. 2005, 26, 1440-1442.
3. For the synthesis and biological activities of isochroman moiety-
containing compounds, see: (a) Clive, D. L. J.; Sannigrahi, M.; Hisaindee, S. J. Org. Chem. 2001, 66, 954-961. (b) Grigg, R.; Savic, V.; Sridharan, V.; Terrier, C. Tetrahedron 2002, 58, $8613-$ 8620. (c) Rakhimov, R. G.; Galin, F. Z.; Tomilov, Y. V.; Le, V. T. Russ. J. Org. Chem. 2002, 38, 1629-1634. (d) Grigg, R.; Sridharan, V. Tetrahedron Lett. 1993, 34, 7471-7474. (e) Anwar, U., Fielding, M. R.; Grigg, R.; Sridharan, V.; Urch, C. J. J. Organometal. Chem. 2006, 691, 1476-1487.
4. For the synthesis and biological activities of tetrahydroisoquinoline moiety-containing compounds, see: (a) Smissman, E. E.; Reid, J. R.; Walsh, D. A. J. Med, Chem. 1976, 19, 127-131. (b) Grigg, R.; Sridharan, V.; Thayaparan, A. Tetrahedron Lett. 2003, 44, 9017-9019. (c) Beccalli, E. M.; Broggini, G.; Martinelli, M.; Masciocchi, N.; Sottocomola, S. Org. Lett. 2006, 8, 4521-4524. (d) Raju, B. C.; Neelakantan, P.; Bhalerao, U. T. Tetrahedron Lett. 2004, 45, 7487-7489. (e) Klumpp, D. A.; Rendy, R.; Zhang, Y.; McElrea, A.; Gomez, A.; Dang, H. J. Org. Chem. 2004, 69, 8108 8110. (f) Chandrasekhar, S.; Mohanty, P. K.; Harikishan, K.; Sasmal, P. K. Org. Lett. 1999, $I, 877-878$. (g) Navarro-Vazquez, A.; Rodriguez, D.; Martinez-Esperon, M. F.; Garcia, A.; Saa, C.; Dominguez, D. Tetrahedron Left. 2007, 48, 2741-2743. (h) Ishibashi, H.; Kato, I., Takeda, Y.; Kogure, M., Tamura, O. Chem, Commin. 2000, 1527-1528. (i) Martinez, E.; Estevez, J. C.; Estevez, R. J.; Castedo, L. Tetrahedron 2001, 57, 1973-1979. (j) Pedrosa, R.; Andres, C.; Iglesias, J. M.; Obeso, M. A. Tetrahedron 2001, 57, 4005-4014.
5. For the synthesis and biological activities of isochromans and tetrahydroisoquinolines having methylene dioxy moiety, see: (a) Fishlock, D., Williams, R. M. Org. Lett, 2006, 8, 3299-3301. (b) Baxendale, I. R.; Ley, S. V. Ind. Eng. Chem. Res. 2005, 44, 8588 8592. (c) Machocho, A. K.; Bastida, J., Codina, C., Vildomat, F.; Brun, R.; Chhabra, S. C. Phytochemistry 2004, 65,3143-3149. (d) Pearson, W. H.; Lovering. F. E. J. Am. Chem. Soc. 1995, 117, 12336-12337. (e) Denmark, S. E.; Schnute, M. E. J. Org. Chem. 1995, 60, 1013-1019. (0) Abelman, M. M.; Overman, L. E.; Tran, V. D. J. Am. Chem. Soc. 1990, 1/2, 6959-6964.
6. For the radical cyclizations involving Baylis-Hillman adducts, see: (a) Singh, V.; Batra, S. Tefrahedron Lett. 2006, 47, 70437045. (b) Shanmugam, P.; Rajasingh, P. Tetrahedron Lett. 2005, 46, 3369-3372. (c) Shanmugam, P.; Rajasingh, P. Symetf 2005, 939-942. (d) Shanmugam, P.; Rajasingh, P. Tetrahedron 2004, 60 , 9283-9285. (e) Alcaide, B.; Almendros, P.; Aragoncillo, C. J. Org. Chem. 2001, 66, 1612-1620. (f) Alcaide, B.; Almendros, P.; Aragoncillo, C. Chem. Conmuth. 1999, 1913-1914.
7. Synthesis of starting materials 1b and 1c, please see: (a) Lee, K. Y.; Gowrisankar, S.; Kim, J. N. Bull. Korean Chem. Soc. 2004, 25, 413-414. (b) K im, J. N.; Chung, Y. M.; Im, Y. J. Tetrahedron Lett. 2002, 43, 6209-6211. (c) Xu, Y.-M.; Shi, M. J. Org. Chem. 2004, 69, 417-425.
