References
- Hamada, H.; Tsuruo, T. J. Biol. Chem. 1988, 263, 1454
- Sousa, V. L.; Costa, M. T.; Palma, A. S.; Enguita, F.; Costa, J. Biochem. J. 2001, 357, 803 https://doi.org/10.1042/0264-6021:3570803
- Viard, M.; Blumenthal, R.; Raviv, Y. Electrophoresis 2002, 23, 1659 https://doi.org/10.1002/1522-2683(200206)23:11<1659::AID-ELPS1659>3.0.CO;2-R
- Brown, A. M.; George, S. M.; Blume, A. J.; Dushin, R. G.; Jacobsen, J. S.; Sonnenbergreines, J. Anal. Biochem. 1994, 217, 139 https://doi.org/10.1006/abio.1994.1094
- Santini, J. T.; Cima, M. J.; Langer, R. Nature 1999, 397, 335 https://doi.org/10.1038/16898
- Jackman, R. J.; Duffy, D. C.; Ostuni, E.; Willmore, N. D.; Whitesides, G. M. Anal. Chem. 1998, 70, 2280 https://doi.org/10.1021/ac971295a
- Beebe, D. J.; Moore, J. S.; Bauer, J. M.; Yu, Q.; Liu, R. H.; Devadoss, D.; Jo, B.-H. Nature 2000, 404, 588
- Service, R. F. Science 2002, 297, 962 https://doi.org/10.1126/science.297.5583.962
- Burns, M. A.; Johnson, B. N.; Brahmasandra, S. N.; Handique, K.; Webster, J. R.; Krishnan, M.; Sammarco, T. S.; Man, P. M.; Jones, D.; Heldsinger, D.; Mastrangelo, C. H.; Burke, D. T. Science 1998, 282, 484 https://doi.org/10.1126/science.282.5388.484
- Choi, Y. S.; Lee, K. S.; Park, D. H. Bull. Korean Chem. Soc. 2005, 26, 379 https://doi.org/10.5012/bkcs.2005.26.3.379
- Stamou, D.; Duschl, C.; Delamarche, E.; Vogel, H. Agnew. Chem. Int. Ed. 2003, 42, 5580 https://doi.org/10.1002/anie.200351866
- MacBeath, G.; Schreiber, S. L. Science 2000, 289, 1760
- Zhu, H.; Klemic, J. F.; Chang, S.; Bertone, P.; Casamayor, A.; Klemic, K. G.; Smith, D.; Gerstein, M.; Reed, M. A.; Snyder, M. Nat. Genet. 2000, 26, 283 https://doi.org/10.1038/81576
- Michaud, G. A.; Salcius, M.; Zhou, F.; Bangham, R.; Bonin, J.; Guo, H.; Snyder, M.; Predki, P. F.; Schweitzer, B. I. Nat. Biotechnol. 2003, 21, 1509 https://doi.org/10.1038/nbt910
- Roth, E. A.; Xu, T.; Das, M.; Gregory, C.; Hickman, J. J.; Boland, T. Biomaterials 2004, 25, 3707 https://doi.org/10.1016/j.biomaterials.2003.10.052
- Newman, J. D.; Turner, A. P. F.; Marrazza, G. Anal. Chim. Acta 1992, 262, 13 https://doi.org/10.1016/0003-2670(92)80002-O
- Xu, T.; Petridou, S.; Lee, E. H.; Roth, E. A.; Vyavahare, N. R.; Hickman, J. J.; Boland, T. Biotechnol. Bioeng. 2004, 85, 29 https://doi.org/10.1002/bit.10768
- Allain, L. R.; Askari, M.; Stokes, D. L.; Vo-Dinh, T.; Fresenius, J. Anal. Chem. 2001, 371, 146
- Blanchard, A. P.; Kaiser, R. J.; Hood, L. E. Biosens. Bioelectron. 1996, 11, 687 https://doi.org/10.1016/0956-5663(96)83302-1
- Roda, A.; Guardigli, M.; Russo, C.; Pasini, P.; Baraldini, M. Biotechniques 2000, 28, 492
- Sherwood, J. K.; Riley, S. L.; Palazzolo, R.; Brown, S. C.; Monkhouse, D. C.; Coates, M.; Griffith, L. G.; Landeen, L. K.; Ratcliffe, A. Biomaterials 2002, 23, 4739 https://doi.org/10.1016/S0142-9612(02)00223-5
- Park, A.; Wu, B.; Griffith, L. G. J. Biomater. Sci. Polym. Ed. 1998, 9, 89 https://doi.org/10.1163/156856298X00451
- Lee, K. Y.; Labianca, N.; Rishton, S. A.; Zolgarnain, S.; Gelorme, J. D.; Shaw, J.; Chang, T. H.-P. J. Vac. Sci. Technol. B 1995, 13, 3012
- Shaw, J. M.; Gelorme, J. D.; Labianca, N. C.; Conley, W. E.; Holmes, S. J. IBM J. Res. Dev. 1997, 41, 81 https://doi.org/10.1147/rd.411.0081
- Malek, C. G. K. Microelectr. J. 2002, 33, 101 https://doi.org/10.1016/S0026-2692(01)00109-4
- Park, S. H.; Lim, T. W.; Yang, D. Y.; Kong, H. J.; Kim, R. H.; Kim, K. S.; Lee, K. S. Bull. Korean Chem. Soc. 2004, 25, 1119 https://doi.org/10.5012/bkcs.2004.25.8.1119
- Lee, J. H.; Woo, S. Y.; Kwon, Y. U.; Jung, D. Y. Bull. Korean Chem. Soc. 2003, 24, 183 https://doi.org/10.5012/bkcs.2003.24.2.183
- Walde, P.; Ichikawa, S. Biomol. Eng. 2001, 18, 143 https://doi.org/10.1016/S1389-0344(01)00088-0
- Sarges, R.; Witkop, B. J. Am. Chem. Soc. 1965, 87, 2011 https://doi.org/10.1021/ja01087a027
- Brasseur, R.; Killian, J. A.; de Kruijff, B.; Ruysschaert, J. M. Biochim. Biophys. Acta 1987, 903, 11 https://doi.org/10.1016/0005-2736(87)90150-7
- Zhang, X.; Padgett, R. S.; Basaran, O. A. J. Fluid Mech. 1996, 329, 207 https://doi.org/10.1017/S0022112096008907
- Gennis, R. B. Biomembranes: Molecular Structure and Function; Springer-Verlag: New York, 1989; pp 288-290
- New, R. R. C. Liposomes a Practical Approach; IRS Press: Oxford, U. K., 1990; pp 14-16
- Kano, K.; Fendler, J. H. Biochim. Biophys. Acta 1978, 509, 289 https://doi.org/10.1016/0005-2736(78)90048-2
- Deamer, D. W. J. Bioeneg. Biomembr. 1987, 19, 457
- Hladky, S. B.; Haydon, D. A. Curr. Top. Membr. Trans. 1984, 21, 327 https://doi.org/10.1016/S0070-2161(08)60444-X
- Clement, N. R.; Gould, J. M. Biochemistry 1981, 20, 1534 https://doi.org/10.1021/bi00509a019
Cited by
- Effect of Phospholipid Bilayer Phase Asymmetry on Phospholipase D Reaction-Induced Vesicle Rupture vol.244, pp.2, 2011, https://doi.org/10.1007/s00232-011-9397-z
- Effect of Mixed-Phospholipid Layer on Phospholipase D Reaction-induced Vesicle Rupture vol.245, pp.11, 2012, https://doi.org/10.1007/s00232-012-9438-2
- Correlation Between Composition of the Outer Layer and Phase Asymmetry for Vesicles Ruptured by Phospholipase D vol.246, pp.5, 2013, https://doi.org/10.1007/s00232-013-9551-x
- Effect of Vesicle Curvature on Phospholipase D Reaction-Induced-Rupture vol.34, pp.11, 2013, https://doi.org/10.5012/bkcs.2013.34.11.3223
- Preparation and Characterization of Vesicles Using Octasubstituted Cyclotetraphosphazene vol.29, pp.10, 2007, https://doi.org/10.5012/bkcs.2008.29.10.2005
- Physical Chemistry Research Articles Published in the Bulletin of the Korean Chemical Society: 2003-2007 vol.29, pp.2, 2008, https://doi.org/10.5012/bkcs.2008.29.2.450
- First-Leaflet Phase Effect on Properties of Phospholipid Bilayer Formed Through Vesicle Adsorption on LB Monolayer vol.237, pp.2, 2007, https://doi.org/10.1007/s00232-010-9311-0
- 인지질분해효소D에 의해 유도된 소낭 융합에 대한 상 비대칭의 영향 vol.53, pp.6, 2015, https://doi.org/10.9713/kcer.2015.53.6.672
- Microreactor Array Device vol.5, pp.None, 2007, https://doi.org/10.1038/srep08736