DOI QR코드

DOI QR Code

Nanoliter Reactor Arrays for Antibiotic Study

  • Park, Jin-Won (Gachon Bionano Research Institute, Kyungwon University)
  • Published : 2007.10.20

Abstract

It is demonstrated in this study that the nanoliter reactor arrays with an inkjet printing, can be used for high throughput screen of antibiotic function. As a model antibiotic, gramicidin was used in this study. The gramicidin embedded lipid vesicles were immobilized on the surface in the nanoliter reactor structure with control of the volume in the nanoliter reactor. By dispensing acidic drops into the reactor, the gramicidin function was monitored. The technique developed in this research also has a great potential to be used for discovery of drugs.

Keywords

References

  1. Hamada, H.; Tsuruo, T. J. Biol. Chem. 1988, 263, 1454
  2. Sousa, V. L.; Costa, M. T.; Palma, A. S.; Enguita, F.; Costa, J. Biochem. J. 2001, 357, 803 https://doi.org/10.1042/0264-6021:3570803
  3. Viard, M.; Blumenthal, R.; Raviv, Y. Electrophoresis 2002, 23, 1659 https://doi.org/10.1002/1522-2683(200206)23:11<1659::AID-ELPS1659>3.0.CO;2-R
  4. Brown, A. M.; George, S. M.; Blume, A. J.; Dushin, R. G.; Jacobsen, J. S.; Sonnenbergreines, J. Anal. Biochem. 1994, 217, 139 https://doi.org/10.1006/abio.1994.1094
  5. Santini, J. T.; Cima, M. J.; Langer, R. Nature 1999, 397, 335 https://doi.org/10.1038/16898
  6. Jackman, R. J.; Duffy, D. C.; Ostuni, E.; Willmore, N. D.; Whitesides, G. M. Anal. Chem. 1998, 70, 2280 https://doi.org/10.1021/ac971295a
  7. Beebe, D. J.; Moore, J. S.; Bauer, J. M.; Yu, Q.; Liu, R. H.; Devadoss, D.; Jo, B.-H. Nature 2000, 404, 588
  8. Service, R. F. Science 2002, 297, 962 https://doi.org/10.1126/science.297.5583.962
  9. Burns, M. A.; Johnson, B. N.; Brahmasandra, S. N.; Handique, K.; Webster, J. R.; Krishnan, M.; Sammarco, T. S.; Man, P. M.; Jones, D.; Heldsinger, D.; Mastrangelo, C. H.; Burke, D. T. Science 1998, 282, 484 https://doi.org/10.1126/science.282.5388.484
  10. Choi, Y. S.; Lee, K. S.; Park, D. H. Bull. Korean Chem. Soc. 2005, 26, 379 https://doi.org/10.5012/bkcs.2005.26.3.379
  11. Stamou, D.; Duschl, C.; Delamarche, E.; Vogel, H. Agnew. Chem. Int. Ed. 2003, 42, 5580 https://doi.org/10.1002/anie.200351866
  12. MacBeath, G.; Schreiber, S. L. Science 2000, 289, 1760
  13. Zhu, H.; Klemic, J. F.; Chang, S.; Bertone, P.; Casamayor, A.; Klemic, K. G.; Smith, D.; Gerstein, M.; Reed, M. A.; Snyder, M. Nat. Genet. 2000, 26, 283 https://doi.org/10.1038/81576
  14. Michaud, G. A.; Salcius, M.; Zhou, F.; Bangham, R.; Bonin, J.; Guo, H.; Snyder, M.; Predki, P. F.; Schweitzer, B. I. Nat. Biotechnol. 2003, 21, 1509 https://doi.org/10.1038/nbt910
  15. Roth, E. A.; Xu, T.; Das, M.; Gregory, C.; Hickman, J. J.; Boland, T. Biomaterials 2004, 25, 3707 https://doi.org/10.1016/j.biomaterials.2003.10.052
  16. Newman, J. D.; Turner, A. P. F.; Marrazza, G. Anal. Chim. Acta 1992, 262, 13 https://doi.org/10.1016/0003-2670(92)80002-O
  17. Xu, T.; Petridou, S.; Lee, E. H.; Roth, E. A.; Vyavahare, N. R.; Hickman, J. J.; Boland, T. Biotechnol. Bioeng. 2004, 85, 29 https://doi.org/10.1002/bit.10768
  18. Allain, L. R.; Askari, M.; Stokes, D. L.; Vo-Dinh, T.; Fresenius, J. Anal. Chem. 2001, 371, 146
  19. Blanchard, A. P.; Kaiser, R. J.; Hood, L. E. Biosens. Bioelectron. 1996, 11, 687 https://doi.org/10.1016/0956-5663(96)83302-1
  20. Roda, A.; Guardigli, M.; Russo, C.; Pasini, P.; Baraldini, M. Biotechniques 2000, 28, 492
  21. Sherwood, J. K.; Riley, S. L.; Palazzolo, R.; Brown, S. C.; Monkhouse, D. C.; Coates, M.; Griffith, L. G.; Landeen, L. K.; Ratcliffe, A. Biomaterials 2002, 23, 4739 https://doi.org/10.1016/S0142-9612(02)00223-5
  22. Park, A.; Wu, B.; Griffith, L. G. J. Biomater. Sci. Polym. Ed. 1998, 9, 89 https://doi.org/10.1163/156856298X00451
  23. Lee, K. Y.; Labianca, N.; Rishton, S. A.; Zolgarnain, S.; Gelorme, J. D.; Shaw, J.; Chang, T. H.-P. J. Vac. Sci. Technol. B 1995, 13, 3012
  24. Shaw, J. M.; Gelorme, J. D.; Labianca, N. C.; Conley, W. E.; Holmes, S. J. IBM J. Res. Dev. 1997, 41, 81 https://doi.org/10.1147/rd.411.0081
  25. Malek, C. G. K. Microelectr. J. 2002, 33, 101 https://doi.org/10.1016/S0026-2692(01)00109-4
  26. Park, S. H.; Lim, T. W.; Yang, D. Y.; Kong, H. J.; Kim, R. H.; Kim, K. S.; Lee, K. S. Bull. Korean Chem. Soc. 2004, 25, 1119 https://doi.org/10.5012/bkcs.2004.25.8.1119
  27. Lee, J. H.; Woo, S. Y.; Kwon, Y. U.; Jung, D. Y. Bull. Korean Chem. Soc. 2003, 24, 183 https://doi.org/10.5012/bkcs.2003.24.2.183
  28. Walde, P.; Ichikawa, S. Biomol. Eng. 2001, 18, 143 https://doi.org/10.1016/S1389-0344(01)00088-0
  29. Sarges, R.; Witkop, B. J. Am. Chem. Soc. 1965, 87, 2011 https://doi.org/10.1021/ja01087a027
  30. Brasseur, R.; Killian, J. A.; de Kruijff, B.; Ruysschaert, J. M. Biochim. Biophys. Acta 1987, 903, 11 https://doi.org/10.1016/0005-2736(87)90150-7
  31. Zhang, X.; Padgett, R. S.; Basaran, O. A. J. Fluid Mech. 1996, 329, 207 https://doi.org/10.1017/S0022112096008907
  32. Gennis, R. B. Biomembranes: Molecular Structure and Function; Springer-Verlag: New York, 1989; pp 288-290
  33. New, R. R. C. Liposomes a Practical Approach; IRS Press: Oxford, U. K., 1990; pp 14-16
  34. Kano, K.; Fendler, J. H. Biochim. Biophys. Acta 1978, 509, 289 https://doi.org/10.1016/0005-2736(78)90048-2
  35. Deamer, D. W. J. Bioeneg. Biomembr. 1987, 19, 457
  36. Hladky, S. B.; Haydon, D. A. Curr. Top. Membr. Trans. 1984, 21, 327 https://doi.org/10.1016/S0070-2161(08)60444-X
  37. Clement, N. R.; Gould, J. M. Biochemistry 1981, 20, 1534 https://doi.org/10.1021/bi00509a019

Cited by

  1. Effect of Phospholipid Bilayer Phase Asymmetry on Phospholipase D Reaction-Induced Vesicle Rupture vol.244, pp.2, 2011, https://doi.org/10.1007/s00232-011-9397-z
  2. Effect of Mixed-Phospholipid Layer on Phospholipase D Reaction-induced Vesicle Rupture vol.245, pp.11, 2012, https://doi.org/10.1007/s00232-012-9438-2
  3. Correlation Between Composition of the Outer Layer and Phase Asymmetry for Vesicles Ruptured by Phospholipase D vol.246, pp.5, 2013, https://doi.org/10.1007/s00232-013-9551-x
  4. Effect of Vesicle Curvature on Phospholipase D Reaction-Induced-Rupture vol.34, pp.11, 2013, https://doi.org/10.5012/bkcs.2013.34.11.3223
  5. Preparation and Characterization of Vesicles Using Octasubstituted Cyclotetraphosphazene vol.29, pp.10, 2007, https://doi.org/10.5012/bkcs.2008.29.10.2005
  6. Physical Chemistry Research Articles Published in the Bulletin of the Korean Chemical Society: 2003-2007 vol.29, pp.2, 2008, https://doi.org/10.5012/bkcs.2008.29.2.450
  7. First-Leaflet Phase Effect on Properties of Phospholipid Bilayer Formed Through Vesicle Adsorption on LB Monolayer vol.237, pp.2, 2007, https://doi.org/10.1007/s00232-010-9311-0
  8. 인지질분해효소D에 의해 유도된 소낭 융합에 대한 상 비대칭의 영향 vol.53, pp.6, 2015, https://doi.org/10.9713/kcer.2015.53.6.672
  9. Microreactor Array Device vol.5, pp.None, 2007, https://doi.org/10.1038/srep08736