DOI QR코드

DOI QR Code

Fabrication of Diameter-tunable Well-aligned ZnO Nanorod Arrays via a Sonochemical Route

  • Jung, Seung-Ho (Department of Chemical Engineering, Pohang University of Science and Technology) ;
  • Oh, Eu-Gene (Department of Chemical Engineering, Kyungpook National University) ;
  • Lee, Kun-Hong (Department of Chemical Engineering, Pohang University of Science and Technology) ;
  • Jeong, Soo-Hwan (Department of Chemical Engineering, Kyungpook National University) ;
  • Yang, Yo-Sep (Department of Material Science and Engineering, Pohang University of Science and Technology) ;
  • Park, Chan-Gyung (Department of Material Science and Engineering, Pohang University of Science and Technology)
  • Published : 2007.09.20

Abstract

A simple and facile sonochemical route was described for the fabrication of diameter-controlled ZnO nanorod arrays on Si wafers. The diameter of ZnO nanorods was controlled by the concentration of zinc cations and hydroxyl anions in aqueous precursor solution. At high concentration of the precursor solution, thick ZnO nanorod arrays were formed. On the contrary, thin ZnO nanorod arrays were formed at low concentration of the precursor solution. The average diameter of ZnO nanorods varies from 40 to 200 nm. ZnO nanorod arrays with sharp tip were also fabricated by the step-by-step decrease in precursor solution concentration. The crystal structure and optical characteristics of ZnO nanorods were investigated by transmission electron microscopy, X-ray diffraction, and photoluminescence spectroscopy. Growth mechanism of ZnO nanorod arrays was also proposed.

Keywords

References

  1. Huang, M. H.; Mao, S.; Feick, H.; Yan, H.; Wu, Y.; Kind, H.; Weber, E.; Russo, R.; Yang, P. Science 2001, 292, 1897 https://doi.org/10.1126/science.1060367
  2. Kim, K. S.; Kang, Y.-S.; Lee, J.-H.; Shin, Y.-J.; Park, N.-G.; Ryu, K. S.; Chang, S. H. Bull. Korean Chem. Soc. 2006, 27, 295 https://doi.org/10.5012/bkcs.2006.27.2.295
  3. Zhu, Y. W.; Zhang, H. Z.; Sun, X. C.; Feng, S. Q.; Xu, J.; Zhao, Q.; Xiang, B.; Wang, R. M.; Yu, D. P. Appl. Phys. Lett. 2003, 83, 144 https://doi.org/10.1063/1.1589166
  4. Ng, H. T.; Han, J.; Yamada, T.; Naguyen, P.; Chen, Y. P.; Meyyappan, M. Nano Lett. 2004, 4, 1247 https://doi.org/10.1021/nl049461z
  5. Cong, G. W.; Wei, H. Y.; Zhang, P. F.; Peng, W. Q.; Wu, J. J.; Liu, X. L.; Jiao, C. M.; Hu, W. G.; Zhu, Q. S.; Wang, Z. G. Appl. Phys. Lett. 2005, 87, 231903 https://doi.org/10.1063/1.2137308
  6. Yang, P.; Yan, H.; Mao, S.; Russo, R.; Johnson, J.; Saykally, R.; Morris, N.; Pham, J.; He, R.; Choi, H.-J. Adv. Funct. Mater. 2002, 12, 323
  7. Wu, J.-J.; Liu, S.-C. J. Phys. Chem. B 2002, 106, 9546
  8. Guo, M.; Diao, P.; Cai, S. J. Solid State Chem. 2005, 178, 1864 https://doi.org/10.1016/j.jssc.2005.03.031
  9. Zhang, Z.; Yu, H.; Shao, X.; Han, M. Chem. Eur. J. 2005, 11, 3149 https://doi.org/10.1002/chem.200401153
  10. Zhang, X.; Zhao, H.; Tao, X.; Zhao, Y.; Zhang, Z. Mater. Lett. 2005, 59, 1745 https://doi.org/10.1016/j.matlet.2005.01.046
  11. Hu, X. L.; Zhu, Y. J.; Wang, S. W. Mater. Chem. Phys. 2004, 88, 421 https://doi.org/10.1016/j.matchemphys.2004.08.010
  12. Suslick, K. S.; Price, G. J. J. Am. Rev. Mater. Sci. 1999, 29, 295 https://doi.org/10.1146/annurev.matsci.29.1.295
  13. Suslick, K. S.; Hammerton, D. A.; Cline, Jr., R. E. J. Am. Chem. Soc. 1986, 108, 5641 https://doi.org/10.1021/ja00278a055
  14. Pol, V. G.; Reisfeld, R.; Gedanken, A. Chem. Mater. 2002, 14, 3920 https://doi.org/10.1021/cm0203464
  15. Suslick, K. S. Science 1990, 247, 1439 https://doi.org/10.1126/science.247.4949.1439
  16. Flint, E. B.; Suslick, K. S. Science 1991, 253, 1397 https://doi.org/10.1126/science.253.5026.1397
  17. Jung, S.-H.; Oh, E.; Lee, K.-H.; Park, W.; Jeong, S.-H. Adv. Mater. 2007, 19, 749 https://doi.org/10.1002/adma.200601859
  18. Li, W. J.; Shi, E. W.; Zhong, W. Z.; Yin, Z. W. J. Cryst. Growth 1999, 203, 186 https://doi.org/10.1016/S0022-0248(99)00076-7
  19. Destaillats, H.; Lesko, T. M.; Knowlton, M.; Wallace, H.; HoffmAm, M. R. Ind. Eng. Chem. Res. 2001, 40, 3855 https://doi.org/10.1021/ie010110u
  20. Mason, T. J. Sonochemistry; Oxford University Press: New York, 1999; p 16
  21. Destaillats, H.; Colussi, A. J.; Joseph, J. M.; HoffmAm, M. R. J. Phys. Chem. A 2000, 104, 8930 https://doi.org/10.1021/jp001415+
  22. Chaparro, A. M.; Maffiotte, C.; Gutierrez, M. T.; Herrero, J. Thin Solid Films 2003, 431-432, 373 https://doi.org/10.1016/S0040-6090(03)00187-1
  23. . Ren, Z. F.; Huang, Z. P.; Xu, J. W.; Wang, J. H.; Bush, P.; Siegal, M. P.; Provencio, P. N. Science 1998, 282, 1105 https://doi.org/10.1126/science.282.5391.1105
  24. Lee, C. J.; Kim, D. W.; Lee, T. J.; Choi, Y. C.; Park, Y. S.; Lee, Y. H.; Choi, W. B.; Lee, N. S.; Park, G.-S.; Kim, J. M. Chem. Phys. Lett. 1999, 312, 461
  25. Vanheusden, K.; Warren, W. L.; Seager, C. H.; Tallant, D. R.; Voigt, J. A.; Gnade, B. E. J. Appl. Phys. 1996, 79, 7983 https://doi.org/10.1063/1.362349
  26. Zhang, Z.; Yuan, H.; Zhou, J.; Liu, D.; Luo, S.; Miao, Y.; Gao, Y.; Wang, J.; Liu, L.; Song, L.; Xiang, Y.; Zhao, X.; Zhou, W.; Xie, S. J. Phys. Chem. B 2006, 110, 8566 https://doi.org/10.1021/jp0568632

Cited by

  1. Surface Modification of Zinc Oxide Nanorods with Zn-Porphyrin via Metal-Ligand Coordination for Photovoltaic Applications vol.33, pp.2, 2012, https://doi.org/10.5012/bkcs.2012.33.2.636
  2. Antibacterial properties and mechanisms of toxicity of sonochemically grown ZnO nanorods vol.5, pp.4, 2015, https://doi.org/10.1039/C4RA12539H
  3. Investigation on Nanostructure and Morphologies of ZnO Nanowires Prepared by Hydrothermal Method vol.979, pp.1662-8985, 2014, https://doi.org/10.4028/www.scientific.net/AMR.979.192
  4. A facile approach to hexagonal ZnO nanorod assembly vol.49, pp.1, 2009, https://doi.org/10.1007/s10971-008-1846-5
  5. The sonochemical synthesis of vertically aligned ZnO nanorods and their UV photodetection properties: Effect of ZnO buffer layer vol.50, pp.None, 2007, https://doi.org/10.1016/j.ultsonch.2018.09.020
  6. Feasibility of ZnO and Zn Seed Layers for Growth of Vertically Aligned and High-Quality ZnO Nanorods by the Sonochemical Method vol.290, pp.None, 2019, https://doi.org/10.4028/www.scientific.net/ssp.290.267