DOI QR코드

DOI QR Code

Simultaneous Gas Chromatography-Mass Spectrometric Determination of Total and Individual Phthalic Esters Utilizing Alkaline Hydrolysis and Silyl Derivatization Technique

  • Kim, Min-Seon (Department of Chemistry, Konkuk University) ;
  • Li, Dong-Hao (Department of Chemistry, Konkuk University) ;
  • Shim, Won-Joon (South Sea Institute, Korea Ocean Research and Development Institute) ;
  • Oh, Jae-Ryoung (South Sea Institute, Korea Ocean Research and Development Institute) ;
  • Park, Jong-Man (Department of Chemistry, Konkuk University)
  • Published : 2007.03.20

Abstract

Environmentally important phthalic esters have been analyzed by GC-MS in terms of individual phthalic esters or total phthalic esters directly or after derivatization. Derivatization improves the chromatographic characteristics of the highly polar phthalic esters. This study focused on the GC-MS determination of the total phthalic esters and the individual phthalic esters simultaneously. The phthalic esters were hydrolyzed to phthalate and corresponding alcohols in 1 M NaOH solution at 90 oC for 30 min followed by extraction with ethyl acetate after acidifcation. The phthalic acid and alcohols were simultaneously silyl derivatized using bis(trimethylsilyl)trifluoroacetamide (BSTFA) to their corresponding silyl ester and ethers in the mixture of 60% acetone and 40% ethyl acetate at room temperature within 30 min. Because of the high reactivity of BSTFA with the phthalic acid and alcohols effective silyl derivatization was possible simultaneously. GC-MS analysis of the silyl derivatives of phthalic acid and alcohols was performed. The total phthalic ester content was estimated from the analytical result of phthalic silyl ester, while the individual phthalic ester was quantified from the analytical results of alcoholic silyl ethers. This technique was applied to spiked tab water and real seawater samples from the Lake Shihwa in Korea. The results were checked against the results from the direct GC-MS analysis of the phthalic esters and reasonable recoveries with high sensitivity were achieved. The recoveries were higher than 75% with low relative standard deviation (below 10%).

Keywords

References

  1. Lin, Z. P.; Ikonomou, M. G.; Jing, H. W.; Mackintosh, C.; Gobas, F. A. P. C. Environ. Sci. Technol. 2003, 37, 2100 https://doi.org/10.1021/es026361r
  2. Giam, C. S.; Chan, H. S.; Neff, G. S.; Atlas, E. L. Science 1978, 199, 419 https://doi.org/10.1126/science.413194
  3. Marin, M. L.; Jimenez, A.; Lopez, J.; Vilaplana, J. J. Chromatogr. A 1996, 750, 183 https://doi.org/10.1016/0021-9673(96)00393-7
  4. Penalver, A.; Pocurull, E.; Borrull, F.; Marce, R. M. J. Chromatogr. A 2000, 872, 191 https://doi.org/10.1016/S0021-9673(99)01284-4
  5. Balafas, D.; Shaw, K. J.; Whitfield, F. B. Food Chem. 1999, 65, 279 https://doi.org/10.1016/S0308-8146(98)00240-4
  6. Jara, S.; Lysebo, C.; Greibrokk, T.; Lundanes, E. Anal. Chim. Acta 2000, 407, 165 https://doi.org/10.1016/S0003-2670(99)00829-6
  7. Moore, N. P. Reproduc. Toxicol. 2000, 14, 183 https://doi.org/10.1016/S0890-6238(00)00068-X
  8. Api, A. M. Food Chem. Toxicol. 2001, 39, 97 https://doi.org/10.1016/S0278-6915(00)00124-1
  9. Filho, I. N.; Schossler, C. M. P.; Caramao, E. B. Chemosphere 2003, 50, 657 https://doi.org/10.1016/S0045-6535(02)00581-7
  10. Foster, P. M. D.; Cattley, R. C.; Mylchreest, E. Food Chem. Toxicol. 2000, 38, S97
  11. Niino, T.; Ishibashi, T.; Itho, T.; Sakai, S.; Ishiwata, H.; Yamada, T.; Onodera, S. J. Chromatogr. B 2002, 780, 35 https://doi.org/10.1016/S1570-0232(02)00413-0
  12. Suzuki, T.; Yaguchi, K.; Suzuki, S.; Suga, T. Environ. Sci. Technol. 2001, 35, 3757 https://doi.org/10.1021/es001860i
  13. Brock, J. W.; Caudill, S. P.; Silva, M. J.; Needham, L. L.; Hilborn, E. D. Bull. Environ. Contam. Toxicol. 2002, 68, 309 https://doi.org/10.1007/s001280255
  14. Clausen, P. A.; Hansen, V.; Gunnarsen, L.; Afshari, A.; Wolkoff, P. Environ. Sci. Technol. 2004, 38, 2531 https://doi.org/10.1021/es0347944
  15. Petrovic , M.; Eljarrat, E.; Alda, M. J. L.; Barcelo, D. Trends Anal. Chem. 2001, 20, 637 https://doi.org/10.1016/S0165-9936(01)00118-2
  16. Thuren, A.; Larsson, P. Environ. Sci. Technol. 1990, 24, 554 https://doi.org/10.1021/es00074a015
  17. Otake, T.; Yoshinaga, J.; Yanagisawa, Y. Environ. Sci. Technol. 2001, 35, 3099 https://doi.org/10.1021/es001914o
  18. Prokupkova, G.; Holadova, K.; Poustka, J.; Hajrlova, J. Anal. Chim. Acta 2002, 457, 211 https://doi.org/10.1016/S0003-2670(02)00020-X
  19. Marttinen, S. K.; Kettunen, R. H.; Sormunen, K. M.; Rintala, J. A. Wat. Res. 2003, 37, 1385 https://doi.org/10.1016/S0043-1354(02)00486-4
  20. Amundson, S. C. J. Chromatogr. Sci. 1978, 16, 170 https://doi.org/10.1093/chromsci/16.4.170
  21. Shintani, H. J. Chromatogr.: Biomedical Applications 1985, 337, 279 https://doi.org/10.1016/0378-4347(85)80041-4
  22. Kambia, K.; Dine, T.; Gressier, B.; Germe, A. F.; Luyckx, M.; Brunet, C.; Michaud, L.; Gottrand, F. J. Chromatogr. B: Biomedical Sciences and Applications 2001, 755, 297 https://doi.org/10.1016/S0378-4347(01)00125-6
  23. Teirylnck, O. A.; Rosseel, M. T. J. Chromatogr. B: Biomedical Sciences and Applications 1985, 342, 399 https://doi.org/10.1016/S0378-4347(00)84534-X
  24. Arbin, A.; Ostelius, J. J. Chromatogr. A 1980, 193, 405 https://doi.org/10.1016/S0021-9673(00)87740-7
  25. Ehrhardt, M.; Derenbach, J. Mar. Chem. 1980, 8, 339 https://doi.org/10.1016/0304-4203(80)90023-7
  26. Ritsema, R.; Cofino, W. P.; Frintrop, P. C. M.; Brinkman, U. A. Th. Chemosphere 1989, 18, 2161
  27. Li, D.; Oh, J. R.; Park, J. J. Chromatogr. A 2003, 1012, 207 https://doi.org/10.1016/S0021-9673(03)01174-9
  28. Staples, C. A.; Parkerton, T. F.; Peterson, D. R. Chemosphere 2000, 40, 885 https://doi.org/10.1016/S0045-6535(99)00315-X
  29. Albro, P. W.; Jordan, S.; Corbett, J. T.; Schroeder, J. L. Anal. Chem. 1984, 56, 247 https://doi.org/10.1021/ac00266a029
  30. Takeshita, R.; Takabatake, E.; Minagawa, K.; Takizawa, Y. J. Chromatogr. A 1977, 133, 303 https://doi.org/10.1016/S0021-9673(00)83487-1
  31. Tanaka, K.; Takeshita, M. Anal. Chim. Acta 1984, 166, 158
  32. Giam, C. S.; Chan, H. S.; Hammargren, T. F.; Neff, G. S.; Stalling, D. L. Anal. Chem. 1976, 48, 78 https://doi.org/10.1021/ac60365a059
  33. Kim, K. R.; Hahn, M. K.; Zlatkis, A.; Horning, E. C.; Middleditch, B. S. J. Chromatogr. 1989, 468, 289 https://doi.org/10.1016/S0021-9673(00)96323-4
  34. Li, D.; Oh, J. R.; Park, J. Anal. Chem. 2001, 73, 3089 https://doi.org/10.1021/ac001494l

Cited by

  1. Migration of 16 phthalic acid esters from plastic drug packaging to drugs by GC-MS vol.5, pp.11, 2013, https://doi.org/10.1039/c3ay40234g
  2. Microextraction methods for the determination of phthalate esters in liquid samples: A review vol.38, pp.14, 2015, https://doi.org/10.1002/jssc.201500013
  3. Current literature in mass spectrometry vol.42, pp.11, 2007, https://doi.org/10.1002/jms.1080
  4. Study of the chemical derivatization of zearalenone and its metabolites for gas chromatography-mass spectrometry analysis of environmental samples vol.1190, pp.1, 2008, https://doi.org/10.1016/j.chroma.2008.02.115
  5. Reliable quantification of phthalates in environmental matrices (air, water, sludge, sediment and soil): A review vol.515, pp.None, 2007, https://doi.org/10.1016/j.scitotenv.2015.02.013
  6. Determination of total phthalate in cosmetics using a simple three-phase sample preparation method vol.410, pp.4, 2018, https://doi.org/10.1007/s00216-017-0774-z