
First Concise Total Synthesis of Biologically Interesting Natural Licoagrochalcone B and Its Unnatural Derivatives

Yong Rok Lee^{*} and Xue Wang

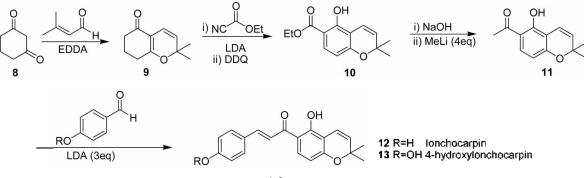
School of Chemical Engineering and Technology, Yeungnam University, Gyeongsan 712-749, Korea. "E-mail: yrlee@yu.ac.kr Received September 17, 2007

Key Words : Natural product, Licoagrochalcone B, Pyranochalcone, Aldol reaction

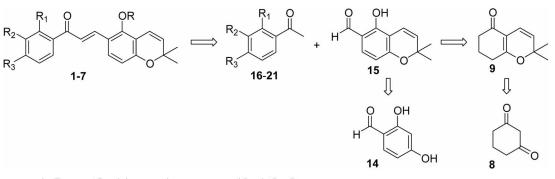
Pyranochalcones are an abundant subclass of the flavonoid and are widely distributed in nature.¹ Members of the pyranochalcones have been associated with a wide variety of biological activities such as antimutagenic, antimicrobial, anti-ulcer, and antitumor activities and some plants are used in traditional medicines in China and Europe.² As part of an ongoing study into traditional medicine and pharmacological tests, the biologically interesting compound, licoagrochalcone B (1) with the pyranochalcone moiety was isolated from Patrinia villosa3 (BaiJiangCao in China) and Glvcvrrhiza glabra⁴ (Figure 1). Licoagrochalcone B (1)shows potent anticancer activity against human cancer cell such as A549, BEL-7402, SGC-7901, MCF-7, HT-29, K562, and A 498.34 Patrinia species are distributed mainly in Central to East Asia and northeast North America. The ShenNongBenCaoJing, a famous ancient Chinese medicinal literary, has documented their use as medicinal plants for more than 2000 years. Some of these plants are still used in traditional medicine as antiviral and antibacterial agents.³

2 R=R₁=R₂=R₃=H 3 R=H, R₁=OCH₃, R₂=R₃=H 4 R=R₁=H, R₂=OCH₃, R₃=H 5 R=R₁=R₂=H, R₃=OCH₃ 6 R=R₁=R₂=H, R₃=CH₃ 7 R=CH₃, R₁=R₂=R₃=H

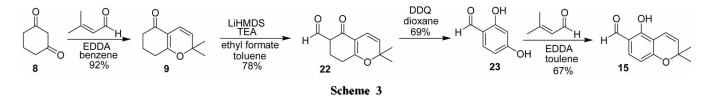
Figure 1. Naturally occurring heoagrochalcone B (1) and unnatural its derivatives 2-7.


Licorice, the root and stolon of *Glvcyrrhiza* species, is also one of the oldest and important medicinal plants.⁴ It has been shown to have a variety of biological properties such as antimutagenic, anti-ulcer, antitumor, antioxitant, and antimicribial activities.⁵ In addition, one of the fractions from the extract of licorice has been developed as an anti-ulcer drug (Aspalon) in Japan.⁴ This wide range of biological properties has stimulated interest in the synthesis of naturally occurring licoagrochalcone B (1) and its derivatives 2-7.

Recently, we reported the synthesis of natural products of lonchocarpin (12) and its derivative 13 with the pyranochalcone moiety starting from 1,3-cyclohexanedione (8) utilizing ethylenediamine diacetate-catalyzed 2*H*-pyran formation as a key step (Scheme 1).⁶ However, although this lonchocarpin (12) and its derivative 13 contain pyranochalcone structure, they are different from licoagrochalcone B and its derivatives in the chalcone moiety. As an extension of our work to the synthesis of pyranochalcones, we report the first synthesis of a biologically interesting natural compound, licoagrochalcone B (1) along with its derivatives 2-7.


Results and Discussion

The retrosynthetic strategy of licoagrochalcone B (1) and its derivatives 2-7 is shown in Scheme 2. Licoagrochalcone B (1) and its derivatives 2-7 could be prepared from a basecatalyzed aldol reactions of acetophenones 16-21 to benzopyran 15. The crucial intermediate 15 could be generated from the commercially available material 8 or 14 *via* ethylenediamine diacetate-catalyzed 2*H*-pyran or benzopyran formation reactions.

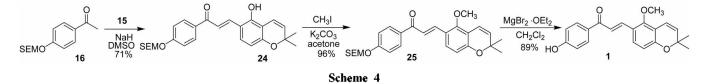

The benzopyran 15 was first achieved from 1,3-cyclohexanedione (8) in 50% overall yield (3 steps) using the

Scheme 1

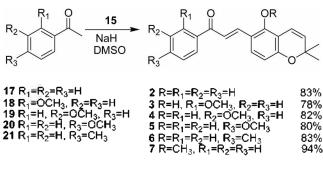
Scheme 2. Retrosynthetic analysis of licoagrochalcone (1) and its derivatives 2-7.

methodology described previously, as shown in Scheme 3.⁷ A reaction of compound 8 with 3-methyl-2-butenal in the presence of 10 mol % of ethylenediamine diacetate in refluxing benzene for 3 h gave the adduct 9 in 92% yield. Treatment of compound 9 with ethyl formate in the presence of LiHMDS/TEA at -78 °C gave compound 22 in 78% yield.⁸ The oxidation of compound 22 with DDQ in refluxing dioxane afforded compound 15 in 69% yield. Recently, we also reported a new methodology for the preparation of a variety of benzopyrans by ethylenediamine diacetate-catalyzed reactions of substituted resorcinols or trihydroxybenzenes to α,β -unsaturated aldehydes.⁹ These reactions involve a formal [3+3]-cycloaddition through a 6π -electrocyclization. To develop more convenient and efficient method for the preparation of benzopyran 15, a one-step reaction was next attempted starting from 2,4-dihydroxybenzaldehyde (23). The reaction of compound 23 with 3-methyl-2-butenal in the presence of 10 mol % of ethylenediamine diacetate in refluxing toluene for 10 h afforded the adduct 15 in 67% yield.

To complete the synthesis of licoagrochalcone B (1), an aldol reaction was next tried as shown in Scheme 4. Attempts to condense 4-hydroxyacetophenone or protected compound 16 to benzopyran 15 using KOH in ethanol were unsuccessful. After examining many procedures, a reaction of compound 16 with benzopytan 15 using NaH in DMSO at room temperature for 48 h provided compound 24 in 71% yield. The assignment of *E* stereochemistry of compound 24 was easily defined as (E) by observation of vicinal coupling constants (J = 15.6 Hz) of α, β -unsaturated carbonyl group. Methylation of compound 24 with methyl iodide under


 K_2CO_3 in acetone at room temperature for 10 h gave compound 25 (96%).¹⁰ Deprotection of 2-(trimethylsilyl)ethoxymethyl (SEM) group of compound 25 using TBAF gave product 1 in low yield (38%). Fortunately, reaction of 25 with MgBr₂·OEt₂ in dichloromethane at room temperature for 3 h afforded licoagrochalcone B (1) in high yield (89%). The spectral data of compound 1 was in good agreement with that of the natural product reported in the literature.^{4a}

In order to extend the utility of this reaction, the synthesis of various analogues of compound 1 was also attempted through further aldol reactions as shown in Scheme 5. Reactions of compounds 17-21 with benzopyran 15 using NaH in DMSO at room temperature for 48 h gave products 2-6 in 83, 78, 82, 80, and 83% yield, respectively. Reaction of compound 2 with methyl iodide under K_2CO_3 in acetone at room temperature for 10 h gave compound 7 in 94% yield.¹⁰


In conclusion, the synthesis of biologically interesting natural licoagrochalcone B (1) and its derivatives 2-7 was accomplished from commercially available 1,3-cyclohexanedione (8) or 2,4-dihydroxybenzaldehyde (23). The key strategy in the synthetic strategy involves the formation of 2H-pyran or benzopyran and an aldol reaction.

Experimental Section

2,2-Dimethyl-2,6,7,8-tetrahydrochromen-5-one (9). To a solution of 1,3-cyclohexanedione (8) (1.120 g, 10.0 mmol) and 3-methyl-2-butenal (1.680 g, 20.0 mmol) in benzene (50 mL) was added ethylenediamine diacetate (180 mg, 1 mmol) at room temperature. The reaction mixture was refluxed for

Notes

Scheme 5

3 h and then cooled to room temperature. Water was added and the solution was extracted with ethyl acetate. Evaporation of solvent and purification by column chromatography on silica gel gave **9** (1.639 g, 92%) as an oil: ¹H NMR (300 MHz, CDCl₃) δ 6.38 (1H, d, J= 10.0 Hz), 5.21 (1H, d, J= 10.0 Hz), 2.39-2.34 (4H, m), 1.99-1.90 (2H, m), 1.37 (6H, s); ¹³C NMR (75 MHz, CDCl₃) δ 195.3, 172.1, 123.2, 116.1, 110.9, 80.1, 36.8, 29.0, 28.5, 28.5, 21.0; IR (neat) 2926, 1645, 1611, 1455, 1399, 1375, 1266, 1188, 1130, 1010, 905 cm⁻¹; HRMS m/z (M⁺) calcd for C₁₁H₁₄O₂: 178.0994. Found: 178.0996.

2,2-Dimethyl-5-oxo-5,6,7,8-tetrahydro-2H-chromene-6-carbaldehyde (22). To a stirred solution of 1,1,1,3,3,3+ hexamethyldisilazane (1.162 g, 7.2 mmol) in 30 mL of dry toluene was added a solution of n-BuLi (2.5 M, 2.6 mL) in hexane at -78 °C. After stirring at the same temperature for 30 min, compound 9 (0.570 g, 3.2 mmol) in toluene (2 mL) and TEA (3.290 g, 32.5 mmol) were added through a cannula. After 30 min, ethyl formate (0.474 g, 6.4 mmol) in toluene (1 mL) was added. The reaction mixture was stirred at the same temperature for 3 h, warmed to room temperature, quenched by addition of aqueous NH4Cl solution. The mixture was extracted with ethyl acetate (3×50 mL). The combined organic layers were washed with brine, dried over MgSO₄, and evaporated under reduced pressure. The residue was purified by flash column chromatography on silica gel to give 22 as an oil (0.515 g, 78%): 11 NMR (300 MHz, CDCl₃) δ 13.78 (1H, d, J = 11.0 Hz), 7.12 (1H, d, J = 11.0Hz), 6.4 (1H, d, J = 10.0 Hz), 5.27 (1H, d, J = 10.0 Hz), 2.57-2.35 (4H, m), 1.40 (6H, s); IR (neat) 2978, 1637, 1586, 1433, 1358, 1273, 1225, 1208, 1134, 1088, 972, 899 cm⁻¹; HRMS m/z (M⁺) Calcd for C₁₂H₁₄O₃: 206.0943. Found: 206.0941.

5-Hydroxy-2,2-dimethyl-2*H*-chromene-6-carbaldehyde (15) from 22. A mixture of 22 (0.455 g, 2.2 mmol) and DDQ (0.749 g, 3.3 mmol) in dioxane (30 mL) was heated under reflux for 3 h. The resulting mixture was cooled in an ice bath and solids were removed by filtration through Celite. The filtrate was evaporated under reduced pressure and purified by flash column chromatography on silica gel to give 15 (0.310 g, 69%) as a solid: mp 45-47 °C; ¹H NMR (300 MHz, CDCl₃) δ 11.63 (1H, s), 9.64 (1H, s), 7.27 (1H, d, J= 8.5 Hz), 6.67 (1H, d, J= 10. 1Hz), 6.40 (1H, d, J= 8.5 Hz), 5.59 (1H, d, J= 10.0 Hz), 1.54 (3H, s), 1.44 (3H, s); ¹³C NMR (75 MHz, CDCl₃) δ 194.9, 161.0, 159.1, 135.1, 129.0, 115.6, 115.5, 109.8, 109.2, 78.6, 29.8, 28.8; IR (KBr) 2974,

1657, 1580, 1489, 1433, 1375, 1335, 1300, 1256, 1217, 1181, 1111, 1088, 974, 937, 900, 845 cm⁻¹; HRMS m/z (M⁺) Calcd for C₁₂H₁₂O₃: 204.0786. Found: 204.0788.

5-Hydroxy-2,2-dimethyl-2*H*-chromene-6-carbaldehyde (15) from 23. To a solution of 2,4-dihydroxybenzaldehyde (23) (138 mg, 1.0 mmol) and 3-methyl-2-butenal (168 mg, 2.0 mmol) in toluene (20 mL) was added ethylenediamine diacetate (18 mg, 1 mmol) at room temperature. The reaction mixture was refluxed for 10 h and then cooled to room temperature. Yield 67% (137 mg).

(E)-3-(5-Hydroxy-2,2-dimethyl-2H-chromen-6-yl)-1[4-(2-trimethylsilanylethoxymethoxy)phenyl]propenone (24). To a solution of 16 (160 mg, 0.6 mmol) in DMSO (10 mL) was added sodium hydride (72 mg, 60% in oil, 1.8 mmol) and aldehyde 15 (143 mg, 0.7 mmol) at room temperature. The reaction mixture was stirred for 48 h at room temperature. Addition of water (30 mL) and extraction with ethyl acetate (3×50 mL), washing with 2 N-HCL solution and brine, drying over MgSO4 and removal of the solvent followed by flash column chromatography on silica gel gave 24 (193 mg, 71%) as a solid: mp 117-118 °C; 111 NMR (300 MHz, CDCl₃) δ 8.52 (1H, d, J = 15.6 Hz), 8.02 (2H, d, J =8.8 Hz), 7.47 (1H, d, J = 15.6 Hz), 7.46 (1H, d, J = 8.6 Hz), 7.09 (2H, d, J = 8.8 Hz), 6.91 (1H, d, J = 10.0 Hz), 6.42 (1H, d, J = 8.6 Hz), 5.54 (1H, d, J = 10.0 Hz), 5.28 (2H, s), 3.72 (2H, t, J = 8.6 Hz), 1.43 (6H, s), 0.95 (2H, t, J = 8.6 Hz),-0.02 (9H, s); ¹³C NMR (75 MHz, CDCl₃) δ 190.4, 161.7, 157.2, 153.5, 141.6, 132.4, 131.2, 129.4, 128.2, 118.2, 117.0, 116.4, 116.2, 110.6, 110.2, 93.0, 77.7, 76.9, 30.1, 28.4, 18.5, -0.99; IR (KBr) 2926, 1638, 1601, 1510, 1464, 1233, 1173, 1092, 992, 837 cm⁻¹; HRMS m/z (M⁺) Calcd for C₂₆H₃₂O₅Si: 452.2019. Found: 452.2021.

(*E*)-3-(5-Methoxy-2,2-dimethyl-2*H*-chromen-6-yl)-1-[4-(2-trimethylsilanylethoxymethoxy)phenyl]propenone (25). Yield 96%. ¹H NMR (300 MHz, CDCl₃) δ 8.01 (2H, d, *J* = 8.8 Hz), 7.97 (1H, d, *J* = 15.6 Hz), 7.50 (1H, d, *J* = 15.6 Hz), 7.46 (1H, d, *J* = 8.6 Hz), 7.09 (2H, d, *J* = 8.8 Hz), 6.62 (1H, d, *J* = 10.0 Hz), 6.59 (1H, d, *J* = 8.6 Hz), 5.65 (1H, d, *J* = 10.0 Hz), 5.27 (2H, s), 3.77 (3H, s), 3.75 (2H, t, *J* = 8.6 Hz), 1.43 (6H, s), 0.94 (2H, t, *J* = 8.6 Hz), -0.02 (9H, s); IR (neat) 2955, 1658, 1603, 1476, 1424, 1250, 1169, 1115, 1094, 988, 837 cm⁻¹; EIMS m/z 466 (M⁺, 10), 436 (32), 435 (100), 393 (49), 378 (25), 377 (83), 218 924), 73 (64); HRMS *m/z* (M⁺) Calcd for C₂₇H₃₄O₅Si: 466.2176. Found: 466.2174.

Licoagrochalcone B (1). To a solution of **25** (100 mg, 0.2 mmol) in CH₂Cl₂ (10 mL) was added MgBr₂·OEt₂ (207 mg, 0.8 mmol) and the mixture was stirred at room temperature for 3 h. The reaction mixture was diluted with CH₂Cl₂ (50 mL), washed with saturated NaHCO₃ solution (30 mL) and dried over MgSO₄. After evaporation of the solvent under reduced pressure, the residue was purified by flash column chromatography on silica gel to give **1** (64 mg, 89%) as a solid: mp 230-231 °C; H NMR (300 MHz, CDCl₃) δ 7.98 (2H, d, J= 8.8 Hz), 7.94 (1H, d, J= 15.6 Hz), 7.52 (2H, d, J= 15.6 Hz), 7.46 (1H, d, J= 8.6 Hz), 6.94 (2H, d, J= 8.8 Hz), 6.62 (1H, d, J= 10.0 Hz), 6.60 (1H, d, J= 8.6 Hz), 5.66 (1H, d, J= 10.0 Hz), 3.78 (3H, s), 1.44 (6H, s); ¹³C NMR (75

MHz, acetone-d₆) δ 188.2, 162.6, 157.1, 138.2, 131.8, 131.7, 131.6, 129.2, 121.9, 121.3, 117.2, 116.2, 116.1, 115.8, 113.8, 77.4, 63.2, 28.2; IR (KBr) 2924, 1601, 1462, 1373, 1262, 1074, 802, 741 cm⁻¹; HRMS *m*/*z* (M⁺) Calcd for C₂₁H₂₀O₄: 336.1362. Found: 336.1364.

(E)-3-(5-Hvdroxy-2,2-dimethyl-2H-chromen-6-yl)-1phenylpropenone (2). To a solution of 17 (48 mg, 0.4 mmol) in DMSO (10 mL) was added sodium hydride (96 mg, 60% in oil, 2.4 mmol) and aldehyde 15 (102 mg, 0.5 mmol) at room temperature. The reaction mixture was stirred for 48 h at room temperature. Addition of water (30 mL) and extraction with ethyl acetate $(3 \times 50 \text{ mL})$, washing with 2 N-HCL solution and brine, drying over MgSO₄ and removal of the solvent followed by flash column chromatography on silica gel gave 2 (102 mg, 83%) as a solid: mp 112-113 °C; ¹H NMR (300 MHz, CDCl₃) δ 8.24 (1H, d, J =15.6 Hz), 8.02-7.99 (2H, m), 7.59-7.42 (5H, m), 6.75 (1H, d, J = 10.0 Hz), 6.45 (1H, d, J = 8.6 Hz), 5.65 (1H, d, J = 10.0Hz), 1.43 (6H, s); ¹³C NMR (75 MHz, CDCl₃) δ 191.9, 157.3, 153.3, 141.9, 138.9, 133.2, 129.7, 128.9, 128.7, 118.8, 116.7, 116.1, 110.5, 110.4, 77.9, 28.4; IR (KBr) 3270, 2976, 1644, 1586, 1564, 1481, 1352, 1318, 1209, 1181, 1123, 1069, 1042, 1024, 995, 772 cm⁻¹; EIMS m/z 306 (M⁺, 25), 292 (21), 291 (100), 289 (18), 275 (23), 185 (10), 105 (88), 77 (31), 69 (12), 57 (16), 55 (14).

(*E*)-3-(5-Hydroxy-2,2-dimethyl-2*H*-chromen-6-yl)-1-(2methoxyphenyl)propenone (3). Yield 78%. mp 126-127 °C; ¹H NMR (300 MHz, CDCl₃) δ 8.13 (1H, d, *J* = 15.7 Hz), 7.67-7.61 (2H, m), 7.44 (1H, t, *J* = 8.6 Hz), 7.35 (1H, d, *J* = 15.7 Hz), 7.32 (1H, d, *J* = 8.6 Hz), 7.03-6.95 (2H, m), 6.84 (1H, d, *J* = 10.0 Hz), 6.39 (1H, d, *J* = 8.6 Hz), 5.59 (1H, d, *J* = 10.0 Hz), 3.97 (3H, s), 1.44 (6H, s); ¹³C NMR (75 MHz, CDCl₃) δ 194.0, 158.2, 156.5, 152.8, 140.3, 132.9, 130.4, 129.4, 129.1, 128.7, 124.1, 120.6, 116.4, 115.8, 111.7, 110.1, 109.7, 76.4, 55.7, 27.9; IR (KBr) 2920, 1636, 1599, 1580, 1483, 1464, 1263, 1117, 1065, 1034, 810, 739 cm⁻¹; EIMS m/z 336 (M⁺, 27), 322 (11), 321 (52), 320 (14), 319 (14), 305 (38), 207 (12), 173 (11), 135 (100), 129 (15), 77 (12).

(*E*)-3-(5-Hydroxy-2,2-dimethyl-2*H*-chromen-6-yl)-1-(3methoxyphenyl)propenone (4). Yield 82%. mp 135-136 °C; ¹H NMR (300 MHz, CDCl₃) δ 8.43 (1H, d, *J* = 15.6 Hz), 7.88 (1H, s), 7.60-7.53 (2H, m), 7.47-7.32 (3H, m), 7.09 (1H, d, *J* = 8.1 Hz), 6.86 (1H, d, *J* = 10.0 Hz), 6.86 (1H, d, *J* = 8.6 Hz), 5.63 (1H, d, *J* = 10.0 Hz), 3.83 (3H, s), 1.43 (6H, s); ¹³C NMR (75 MHz, CDCl₃) δ 191.9, 160.2, 157.5, 153.6, 142.4, 140.3, 129.9, 129.5, 128.5, 121.6, 119.8, 118.5, 116.9, 116.2, 113.3, 110.6, 110.3, 77.4, 55.8, 28.4; IR (KBr) 2975, 1635, 1574, 1464, 1115, 901, 804, 737 cm⁻¹; EIMS m/z 336 (M⁺, 30), 322 (21), 321 (100), 319 (12), 305 (20), 185 (11), 135 (69), 107 (12).

(*E*)-3-(5-Hydroxy-2,2-dimethyl-2*H*-chromen-6-yl)-1-(4methoxyphenyl)propenone (5). Yield 80%. mp 144-145 °C; ¹H NMR (300 MHz, CDCl₃) δ 8.48 (1H, d, *J*=15.6 Hz), 8.02 (2H, d, *J*= 8.8 Hz), 7.46 (1H, d, *J*=15.6 Hz), 7.45 (1H, d, *J*= 8.7 Hz), 6.97-6.92 (3H, m), 6.42 (1H, d, *J*= 8.7 Hz), 5.62 (1H, d, J = 10.0 Hz), 3.86 (3H, s), 1.43 (6H, s); ¹³C NMR (75 MHz, CDCl₃ + DMSO-d₆) δ 190.2, 163.8, 157.1, 153.4, 141.2, 131.7, 131.3, 129.4, 128.4, 118.5, 117.0, 116.4, 114.2, 110.6, 110.2, 76.9, 55.9, 28.3; IR (KBr) 3175, 2973, 1634, 1605, 1582, 1553, 1350, 1258, 1235, 1207, 1165, 1030, 993, 829, 783, 721 cm⁻¹; EIMS m/z 336 (M⁺, 22), 322 (13), 321 (60), 320 (37), 319 (33), 306 (20), 305 (95), 173 (27), 135 (100), 129 (17), 83 (16), 73 (18), 71 (19), 69 (21), 57 (29), 55 (22).

(*E*)-3-(5-Hydroxy-2,2-dimethyl-2*H*-chromen-6-yl)-1-(4methylphenyl)propenone (6). Yield 83%. mp 141-142 °C; ¹H NMR (300 MHz, CDCl₃) δ 8.30 (1H, d, *J* = 15.6 Hz), 7.92 (2H, d, *J* = 8.8 Hz), 7.46 (1H, d, *J* = 15.6 Hz), 7.42 (1H, d, *J* = 8.6 Hz), 7.26 (2H, d, *J* = 8.8 Hz), 6.82 (1H, d, *J* = 10.0 Hz), 6.43 (1H, d, *J* = 8.6 Hz), 5.64 (1H, d, *J* = 10.0 Hz), 2.41 (3H, s), 1.43 (6H, s); ¹³C NMR (75 MHz, CDCl₃ + DMSOd₆) δ 190.7, 156.9, 153.7, 143.5, 141.1, 136.6, 129.6, 129.2, 129.1, 128.9, 119.4, 117.4, 116.8, 111.0, 110.0, 76.7, 28.3, 22.1; IR (KBr) 2973, 1634, 1610, 1283, 1115, 819, 737 cm⁻¹; EIMS m/z 320 (M⁺, 25), 306 (17), 305 (81), 303 (11), 289 (15), 185 (11), 129 (40), 119 (100), 112 (10), 91 (26), 73 (12), 71 (14), 70 (12), 69 (21), 57 (20), 55 (14).

(*E*)-3-(5-Methoxy-2,2-dimethyl-2*H*-chromen-6-yl)-1phenylpropenone (7). Yield 94%. ¹H NMR (300 MHz, CDCl₃) δ 8.02-7.97 (3H, m), 7.55-7.45 (5H, m), 6.62 (1H, d, J = 8.6 Hz), 6.59 (1H, d, J = 10.0 Hz), 5.66 (1H, d, J = 10.0 Hz), 3.78 (3H, s), 1.44 (6H, s); IR (neat) 2976, 1658, 1589, 1476, 1372, 1296, 1252, 1208, 1115, 1073, 988, 889, 818, 775 cm⁻¹; EIMS m/z 320 (M⁺, 10), 306 (21), 305 (100), 290 (21), 289 (99), 274 (10), 185 (44), 105 (15), 77 (15).

Acknowledgements. This work was supported by grant No. RTI04-01-04 from the Regional Technology Innovation Program of the Ministry of Commerce, Industry, and Energy (MOCIE).

References and Notes

- Wagner, H.; Farkas, L. In *The Flavonoids*; Harorne, J. B., Mabry, T. J., Mabry, H., Eds.; Academic Press: New York, 1975; p 127.
- Welton, A. F.; Tobias, L. D.; Fiedler-Nagy, C.; Anderson, W.; Hope, W.; Meyers, K.; Coffey, J. W. In *Plant Flavnoids in Biology* and *Medicine*; Cody, V.; Middleton, Jr., E.; Harborne, J. B., Eds.; Alan R. Liss: New York, 1986; p 231.
- (a) Peng, J.; Fan, G.; Wu, Y. J. Chromatogr. A 2006, 1115, 103. (b) Peng, J.; Fan, G.; Chai, Y.; Wu, Y. J. Chromatogr. A 2006, 1102, 44.
- (a) Li, W.; Asada, Y.; Yoshikawa, T. Phytochemistry 2000, 55, 447. (b) Asada, Y.; Yoshikawa, T. Phytochemistry 1998, 47, 389.
- 5. Ngo, H. N.; Teel, R. W.; Lau, B. H. S. Nutrition Res. 1992, 12, 247.
- 6. Lee, Y. R.; Kim, D. H. Synthesis 2006, 603.
- Lee, Y. R.; Lee, W. K.; Noh, S. K.; Lyoo, W. S. Synthesis 2006, 853.
- McNeil, A. J.; Collum, D. B. J. Am. Chem. Soc. 2005, 127, 5655.
- (a) Lee, Y. R.; Choi, J. H.; Yoon, S. H. *Tetrahedron Lett.* 2005, *46*, 7539. (b) Lee, Y. R.; Kim, J. H. *Synlett* 2007, 2232. (c) Lee, Y. R.; Wang, X. *Bull. Korean Chem. Soc.* 2005, *26*, 1933.
- Shrestha, S.; Hwang, S. Y.; Lee, K.-H.; Cho, H. Bull. Korean Chem. Soc. 2005, 26, 1138.