DOI QR코드

DOI QR Code

The Determination of Dopamine in the Presence of Ascorbic Acid at the Modified Glassy Carbon Electrode with Phytic Acid and Single-Walled Carbon Nanotubes

  • Bae, Si-Ra (Department of Chemistry and Institute of Basic Science, Chonnam National University) ;
  • Jeong, Hae-Sang (Department of Chemistry and Institute of Basic Science, Chonnam National University) ;
  • Jeon, Seung-Won (Department of Chemistry and Institute of Basic Science, Chonnam National University)
  • Published : 2007.12.20

Abstract

A glassy carbon electrode (GCE) modified with phytic acid (PA) and single-walled carbon nanotubes (SWNTs) were investigated by voltammetric methods in buffer solution. The PA-SWNTs/GCE-modified electrode demonstrated substantial enhancements in electrochemical sensitivity and selectivity towards dopamine (DA) in the presence of L-ascorbic acid (AA). The PA-SWNTs films promoted the electron transfer reaction of DA, while the PA film, acting as a negatively charged linker, combined with the positively charged DA to induced DA accumulation in the film at pH under 7.4. However, the PA film restrained the electrochemical response of the negatively charged AA due to the electrostatic repulsion. The anodic peak potentials of DA and AA could be separated by electrochemical techniques, and the interferences from AA were effectively eliminated in the DA determination. Linear calibration plots were obtained in the DA concentration range of 0.1-10 μM and the detection limit of the DA oxidation current was determined to be 0.06 μM at a signal-to-noise ratio of 3. The results indicated that the modified electrode is used to determine DA without interference from AA.

Keywords

References

  1. Iijima, S. Nature 1991, 354, 56 https://doi.org/10.1038/354056a0
  2. Wang, J.; Deo, R. P.; Poulin, P.; Mangey, M. J. Am. Chem. Soc. 2003, 125, 14706 https://doi.org/10.1021/ja037737j
  3. Chen, R. S.; Huang, W.-H.; Tong, H.; Wang, Z.-L.; Cheng, J.-K. Anal. Chem. 2003, 75, 6341 https://doi.org/10.1021/ac0340556
  4. Ozoemena, K. I.; Nyokong, T.; Nkosi, D.; Chambrier, I.; Cook, M. J. Electrochim. Acta 2007, 52, 4132 https://doi.org/10.1016/j.electacta.2006.11.039
  5. Ma, Y.; Ali, S. R.; Dodoo, A. S.; He, H. J. Phys. Chem. B 2006, 11, 16359
  6. Zhang, P.; Wu, F.-H.; Zhao, G.-C.; Wei, X.-W. Bioelectrochemistry 2005, 67, 109 https://doi.org/10.1016/j.bioelechem.2004.12.004
  7. Poh, W. C.; Loh, K. P.; Zhang, W. D.; Sudhiranjan, T.; Ye, J.-S.; Sheu, F.-S. Langmuir 2004, 20, 5484 https://doi.org/10.1021/la0490947
  8. Abbaspour, A.; Izadyar, A. Talanta 2007, 71, 887 https://doi.org/10.1016/j.talanta.2006.05.085
  9. Song, Z.; Huang, J.-D.; Wu, B.-Y.; Shi, H.-B.; Anzai, J.-I.; Chen, Q. Sens. Actuators B 2006, 115, 626 https://doi.org/10.1016/j.snb.2005.10.030
  10. Maleki, N.; Safavi, A.; Tajabadi, F. Anal. Chem. 2006, 78, 3820 https://doi.org/10.1021/ac060070+
  11. Valentini, F.; Amine, A.; Orlanducci, S.; Terranova, M. L.; Palleschi, G. Anal. Chem. 2003, 75, 5413 https://doi.org/10.1021/ac0300237
  12. Jiao, S.; Li, M.; Wang, C.; Chen, D.; Fang, B. Electrochim. Acta 2007, 52, 5939 https://doi.org/10.1016/j.electacta.2007.03.039
  13. Rubianes, M. D.; Rivas, G. A. Electrochem. Commun. 2007, 9, 480 https://doi.org/10.1016/j.elecom.2006.08.057
  14. Zhang, Y.; Cai, Y.; Su, S. Anal. Biochem. 2006, 350, 285 https://doi.org/10.1016/j.ab.2006.01.002
  15. Zhao, Y.; Gao, Y.; Zhan, D.; Liu, H.; Zhao, Q.; Kou, Y.; Shao, Y.; Li, M.; Zhuang, Q.; Zhu, Z. Talanta 2005, 66, 51 https://doi.org/10.1016/j.talanta.2004.09.019
  16. Luo, H.; Shi, Z.; Li, N.; Gu, Z.; Zhuang, Q. Anal. Chem. 2001, 73, 915 https://doi.org/10.1021/ac000967l
  17. Yogeswaran, U.; Chen, S.-M. Electrochim. Acta 2007, 52, 5985 https://doi.org/10.1016/j.electacta.2007.03.047
  18. Xiang, L.; Lin, Y.; Yu, P.; Su, L.; Mao, L. Electrochim. Acta 2007, 52, 4144 https://doi.org/10.1016/j.electacta.2006.11.040
  19. Boo, H.; Jeong, R.-A.; Park, S.; Kim, K. S.; An, K. H.; Lee, Y. H.; Han, J. H.; Kim, H. C.; Chung, T. D. Anal. Chem. 2006, 78, 617 https://doi.org/10.1021/ac0508595
  20. Ly, S. Y. Bioelectrochemistry 2006, 68, 227 https://doi.org/10.1016/j.bioelechem.2005.09.002
  21. Wang, H.-S.; Li, T.-H.; Jia, W.-L.; Xu, H.-Y. Biosens. Bioelectron. 2006, 22, 664 https://doi.org/10.1016/j.bios.2006.02.007
  22. Liu, Y.; Zou, X.; Dong, S. Electrochem. Commun. 2006, 8, 1429 https://doi.org/10.1016/j.elecom.2006.06.024
  23. Hu, C.; Chen, X.; Hu, S. J. Electroanal. Chem. 2006, 586, 77 https://doi.org/10.1016/j.jelechem.2005.09.008
  24. Antiochia, R.; Lavagnini, I.; Magno, F.; Valentini, F.; Palleschi, G. Electroanalysis 2004, 16, 1451 https://doi.org/10.1002/elan.200302971
  25. Wu, K.; Fei, J.; Hu, S. Anal. Biochem. 2003, 318, 100 https://doi.org/10.1016/S0003-2697(03)00174-X
  26. Wang, Z.-H.; Liang, Q.-L.; Wang, Y.-M.; Luo, G.-A. J. Electroanal. Chem. 2003, 540, 129 https://doi.org/10.1016/S0022-0728(02)01300-1
  27. Zou, Y.; Sun, L.; Xu, F. Talanta 2007, 72, 437 https://doi.org/10.1016/j.talanta.2006.11.001
  28. Zhao, Y.-D.; Bi, Y.-H.; Zhang, W.-D.; Luo, Q.-M. Talanta 2005, 65, 489 https://doi.org/10.1016/j.talanta.2004.06.028
  29. Luque, G. L.; Ferreyra, N. F.; Rivas, G. A. Talanta 2007, 71, 1282 https://doi.org/10.1016/j.talanta.2006.06.041
  30. Antiochia, R.; Gorton, L. Biosens. Bioelectron. 2007, 22, 2611 https://doi.org/10.1016/j.bios.2006.10.023
  31. Chu, X.; Duan, D.; Shen, G.; Yu, R. Talanta 2007, 71, 2040 https://doi.org/10.1016/j.talanta.2006.09.013
  32. Lin, Y.; Lu, F.; Tu, Y.; Ren, Z. Nano. Lett. 2004, 4, 191 https://doi.org/10.1021/nl0347233
  33. Zhu, L.; Zhai, J.; Yang, R.; Tian, C.; Guo, L. Biosens. Bioelectron. 2007, 22, 2768 https://doi.org/10.1016/j.bios.2006.12.027
  34. Zeng, J.; Gao, X.; Wei, W.; Zhai, X.; Yin, J.; Wu, L.; Liu, X.; Liu, K.; Gong, S. Sens. Actuators B: Chemical 2007, 120, 595 https://doi.org/10.1016/j.snb.2006.03.016
  35. Zhang, M.; Gorski, W. J. Am. Chem. Soc. 2005, 127, 2058 https://doi.org/10.1021/ja044764g
  36. Wu, K.; Hu, S.; Fei, J.; Bai, W. Anal. Chim. Acta 2003, 489, 215 https://doi.org/10.1016/S0003-2670(03)00718-9
  37. Persson, H.; Turk, M.; Nyman, M.; Sandberg, A. S. J. Agric. Food Chem. 1998, 46, 3194 https://doi.org/10.1021/jf971055w
  38. Crea, P.; de Robertis, A.; De Stefano, C.; Sammartano, S. Biophys. Chem. 2006, 124, 18 https://doi.org/10.1016/j.bpc.2006.05.027
  39. De Stefano, C.; Milea, D.; Porcino, N.; Sammartano, S. J. Agric. Food Chem. 2006, 54, 1459 https://doi.org/10.1021/jf0522208
  40. De Stefano, C.; Milea, D.; Sammartano, S. Biophys. Chem. 2005, 116, 111 https://doi.org/10.1016/j.bpc.2005.02.005
  41. Yang, L.; Liu, H.; Hu, N. Electrochem. Commun. 2007, 9, 1057 https://doi.org/10.1016/j.elecom.2006.12.016
  42. McKenzie, K. J.; Marken, F.; Opallo, M. Bioelectrochem. 2005, 66, 41 https://doi.org/10.1016/j.bioelechem.2004.03.008
  43. Paddon, C. A.; Marken, F. Electrochem. Commun. 2004, 6, 1249 https://doi.org/10.1016/j.elecom.2004.09.025
  44. Mckenzie, K. J.; Marken, F. Langmuir 2003, 19, 4327 https://doi.org/10.1021/la0267903
  45. McKenzie, K. J.; Marken, F.; Hyde, M.; Compton, R. G. New J. Chem. 2002, 26, 625 https://doi.org/10.1039/b200912a
  46. Zhang, G.; Xu, J.; Chen, H. Electrochem. Commun. 2006, 8, 148 https://doi.org/10.1016/j.elecom.2005.11.001
  47. Chamssedine, F.; Claves, D. Chem. Phys. Lett. 2007, 443, 102 https://doi.org/10.1016/j.cplett.2007.06.022

Cited by

  1. Poly(thionine)-modified GC Electrode for Simultaneous Detection of Dopamine and Uric Acid in the Presence of Ascorbic Acid vol.29, pp.10, 2008, https://doi.org/10.5012/bkcs.2008.29.10.1883
  2. Electrochemical Dopamine Sensors Based on Graphene vol.10, pp.2, 2007, https://doi.org/10.5229/jecst.2019.10.2.185