DOI QR코드

DOI QR Code

Synthesis and Characterization of Degradable Polycationic Polymers as Gene Delivery Carriers

  • Kim, Hyun-Jin (School of Chemistry & Molecular Engineering, Seoul National University) ;
  • Kwon, Min-Sung (School of Chemistry & Molecular Engineering, Seoul National University) ;
  • Choi, Joon-Sig (Department of Biochemistry, Chungnam Natiional University) ;
  • Kim, Bo-Hye (School of Chemistry & Molecular Engineering, Seoul National University) ;
  • Yoon, Jae-Keun (School of Chemistry & Molecular Engineering, Seoul National University) ;
  • Kim, Kwan (School of Chemistry & Molecular Engineering, Seoul National University) ;
  • Park, Jong-Sang (School of Chemistry & Molecular Engineering, Seoul National University)
  • Published : 2007.01.20

Abstract

Biodegradable cationic poly(ester-amide) polymers were synthesized by double-monomer method, that showed excellent solubility in many organic solvents and water. Different degradation patterns were obtained by the regulation of monomer ratios and overall long period of time of DNA protection up to 12 days was shown by PicoGreen reagent assay. Good transfection profiles in the presence of serum and very low toxicity on mammalian cells may allow these polymers to become suitable for long-term gene delivery systems and therapeutic applications.

Keywords

References

  1. Kabanov, A. V.; Felgner, P. L.; Seymour, L. W. Self-Assembling Complexes for Gene Delivery; From Laboratory to Clinical Trial; John Wiley and Sons, Inc.: New York, 1998
  2. McTaggart, S.; Al-Rubeai, M. Biotechnol. Adv. 2002, 20, 1-31 https://doi.org/10.1016/S0734-9750(01)00087-8
  3. Kafri, T.; Morgan, D.; Krahl, T.; Sarvetnick, N.; Sherman, L.; Verma, I. Proc. Natl. Acad. Sci. U.S.A. 1998, 95, 11377-11382
  4. Lynn, D. M.; Langer, R. J. Am. Chem. Soc. 2000, 122, 10761-10786 https://doi.org/10.1021/ja0015388
  5. Lim, Y.; Kim, C.; Kim, K.; Kim, S. W.; Park, J. J. Am. Chem. Soc. 2000, 122, 6524-6525 https://doi.org/10.1021/ja001033h
  6. Lynn, D. M.; Langer, R. J. Am. Chem. Soc. 2000, 122, 10761-10786 https://doi.org/10.1021/ja0015388
  7. Wang, J.; Mao, H.; Leong, K. W. J. Am. Chem. Soc. 2001, 123, 9480-9481 https://doi.org/10.1021/ja016062m
  8. Lim, Y.; Kim, S.; Lee, Y.; Lee, W.; Yang, T.; Le, M.; Suh, H.; Park, J. J. Am. Chem. Soc. 2001, 123, 2460-2461 https://doi.org/10.1021/ja005715g
  9. Lim, Y.; Kim, S.; Suh, H.; Park, J. Bioconjugate Chem. 2002, 13, 952-957 https://doi.org/10.1021/bc025541n
  10. Kim, H. J.; Kwon, M. S.; Choi, J. S.; Yang, S. M.; Yoon, J. K.; Kim, K.; Park, J. Biomaterials 2006, 27, 2292-301 https://doi.org/10.1016/j.biomaterials.2005.10.023
  11. Gao, C.; Yan, D. Prog. Polym. Sci. 2004, 29, 183-275 https://doi.org/10.1016/j.progpolymsci.2003.12.002
  12. Choi, J. S.; Nam, K.; Park, J.; Kim, J.; Lee, J.; Park, J. J. Controlled Release 2004, 99, 445-456 https://doi.org/10.1016/j.jconrel.2004.07.027

Cited by

  1. Biophysical characterization of quaternary pyridinium functionalized polynorbornenes for DNA complexation and their cellular interactions vol.107, pp.4, 2017, https://doi.org/10.1002/bip.23005
  2. Advanced Materials for Gene Delivery vol.995, pp.1662-8985, 2014, https://doi.org/10.4028/www.scientific.net/AMR.995.29
  3. Enhancement of the Transfection Efficiency of Poly(ethylenimine) by Guanidylation vol.29, pp.3, 2007, https://doi.org/10.5012/bkcs.2008.29.3.666
  4. Analysis of the Relationship between the Molecular Weight and Transfection Efficiency/Cytotoxicity of Poly-L-arginine on a Mammalian Cell Line vol.30, pp.4, 2007, https://doi.org/10.5012/bkcs.2009.30.4.927
  5. In vitro Gene Delivery to HepG2 Cells with a Novel Galactosylated Polyornithine vol.30, pp.7, 2007, https://doi.org/10.5012/bkcs.2009.30.7.1622
  6. Novel amphiphilic block-copolymer forming stable micelles and interpolyelectrolyte complexes with DNA for efficient gene delivery vol.70, pp.8, 2007, https://doi.org/10.1080/00914037.2020.1740988