DOI QR코드

DOI QR Code

Efficient Bimodal Ring-opening Polymerization of ε-Caprolactone Catalyzed by Titanium Complexes with N-Alkoxy-β-ketoiminate Ligands

  • Cho, Min-Ho (Department of Chemistry, Inha University) ;
  • Yoon, Jin-San (Department of Polymer Engineering, Inha University) ;
  • Lee, Ik-Mo (Department of Polymer Engineering, Inha University)
  • Published : 2007.12.20

Abstract

A series of titanium complexes containing terdentate β-ketoiminate ligands were found to be efficient for the ring-opening polymerization of ε-caprolactone (ε-CL), producing poly(ε-caprolactone) (PCL) with bimodal distribution. Steric factors imposed by methyl substituents on the back bone of the alkoxy group affected significantly the polymerization rate and physical properties of the resulting PCL. Intra- and intermolecular transesterifications rather than disproportional rearrangements were responsible for the bimodal behavior and for the change in the molecular weight (Mw). Dilution with toluene reduced yield, and lowered polydispersity (PDI) and Mw of PCL, while the catalytic activities of the dimeric complex, [Ti(Oi-Pr)2(N-alkoxy-β- ketoiminate)]2 and Ti(Oi-Pr)4 were not sensitive to the added solvent. The dimeric complex showed living character, while other catalysts suffered from chain termination reactions.

Keywords

References

  1. Vert, M.; Schwarch, G.; Coudance, J. J. Macromol. Sci., Pure Appl. Chem. 1995, A32, 787
  2. Chang, Y. N.; Mueller, R. E.; Iannotti, E. L. Plant Growth Regul. 1996, 19, 223 https://doi.org/10.1007/BF00037795
  3. Spinu, M.; Jackson, C.; Keating, M. Y.; Gardener, K. H. J. Macromol. Sci., Pure Appl. Chem. 1996, A33, 1497
  4. Inoue, S.; Tomoi, Y.; Tsuruta, T.; Furukawa, J. Makromol. Chem. 1961, 48, 229 https://doi.org/10.1002/macp.1961.020480121
  5. Sipos, L.; Zuga, M. J. Macromol. Sci., Pure Appl. Chem. 1997, A34, 1269
  6. Nomur, R.; Ueno, A.; Endo, T. Macromolecules 1994, 27, 620 https://doi.org/10.1021/ma00080a046
  7. Jedlinski, Z.; Kowalczuk, M.; Kurock, P. Makromol. Chem., Macromol. Symp. 1986, 3, 277
  8. Piao, L.; Dai, Z.; Deng, M.; Chen, X.; Jing, X. Polymer 2003, 44, 2025 https://doi.org/10.1016/S0032-3861(03)00087-9
  9. Zhong, Z.; Dijkstra, P.J.; Birg, C.; Westerhausen, M.; Feijen, J. Macromolecules 2001, 34, 3863 https://doi.org/10.1021/ma0019510
  10. Piao, L.; Deng, M.; Chen, X.; Jiang, L.; Jing, X. Polymer 2003, 44, 2331 https://doi.org/10.1016/S0032-3861(03)00118-6
  11. Zhong, Z.; Ankone, M. J. K.; Dijkstra, P. J.; Birg, C.; Westerhausen, M.; Feijen, J. Polymer Bulletin 2001, 46, 51 https://doi.org/10.1007/s002890170088
  12. Zhong, Z.; Schneiderbauer, S.; Dijkstra, P. J.; Westerhausen, M.; Feijen, J. Polymer Bulletin 2003, 51, 175 https://doi.org/10.1007/s00289-003-0211-7
  13. Kricheldorf, H. R.; Boettcher, C.; Tonnes, K. U. Polymer 1992, 33, 2817 https://doi.org/10.1016/0032-3861(92)90459-A
  14. Nijenhuis, A. J.; Grijpma, D. W.; Pennings, A. J. Macromolecules 1992, 25, 6419 https://doi.org/10.1021/ma00050a006
  15. Stevels, E. J.; Bernard, A.; van de Witte, P.; Dijkstra, P. J.; Feijen, J. J. Appl. Polym. Sci. 1996, 62, 1295 https://doi.org/10.1002/(SICI)1097-4628(19961121)62:8<1295::AID-APP20>3.0.CO;2-5
  16. Coudane, J.; Ustrariz-Peyret, C.; Schwach, G.; Vert, M. J. Polym. Sci., Part A: Polym. Chem. 1997, 35, 1651
  17. Thakur, K. A. M.; Kean, R. T.; Hall, E. S.; Kolsted, J. J.; Lindgren, T. A.; Doscotch, M. A.; Siepmann, J. I.; Munson, E. J. Macromolecules 1997, 30, 2422 https://doi.org/10.1021/ma9615967
  18. Dwan'Isa, J.-P. L.; Lecomte, P.; Dubois, P.; Jerome, R. Macromolecules 2003, 36, 2609 https://doi.org/10.1021/ma025973t
  19. Choi, C.; Chae, S. Y.; Kim, T.-H.; Jang, M.-K.; Cho, C. S.; Nah, J.-W. Bull. Korean Chem. Soc. 2005, 26(4), 523-528 https://doi.org/10.1007/s11814-009-0089-7
  20. Bero, M.; kasperczyk, J.; Jedlinski, Z. J. Makromol. Chem. 1990, 191, 2287 https://doi.org/10.1002/macp.1990.021911007
  21. Yasuda, T.; Aida, T.; Inoue, S. Bull. Chem. Soc. Jpn. 1986, 59, 3931 https://doi.org/10.1246/bcsj.59.3931
  22. Endo, M.; Aida, T.; Inoue, S. Macromolecules 1987, 20, 2982 https://doi.org/10.1021/ma00178a005
  23. Shimasaki, K.; Aida, T.; Inoue, S. Macromolecules 1987, 20, 3076 https://doi.org/10.1021/ma00178a023
  24. Trofimoff, L.; Aida, T.; Inoue, S. Chem. Lett. 1987, 991
  25. Dubois, P.; Jerome, R.; Tessie, P. Makromol. Chem., Macromol. Symp. 1991, 42/43, 103
  26. Dubois, P.; Jacobs, C.; Jerome, R.; Teyssie, P. Macromolecules 1991, 24, 2266 https://doi.org/10.1021/ma00009a022
  27. Kricheldorf, H. R.; Boettcher, C. Makromol. Chem. 1993, 194, 1653 https://doi.org/10.1002/macp.1993.021940613
  28. Le Borbne, A.; Wisniewski, M.; Spassky, N. Polym. Prep. (Div. Polym. Chem., Am. Chem. Soc.) 1995, 36(2), 217
  29. Raquez, J.-M.; Degee, P.; Narayan, R.; Dubois, P. Macromolecules 2001, 34, 8419
  30. Chakraborty, D.; Chen, E. Y. X. Organometallics 2002, 21, 1438 https://doi.org/10.1021/om011051n
  31. Yu, R. C.; Hung, C. H.; Huang, J. H.; Lee, H. Y.; Chen, J. T. Inorg. Chem. 2002, 41, 6450 https://doi.org/10.1021/ic025785j
  32. Radano, C. P.; Baker, G. L.; Smith, III, M. R. J. Am. Chem. Soc. 2000, 122, 1552 https://doi.org/10.1021/ja9930519
  33. Chakraborty, D.; Chen, E. Y. X. Organometallics 2002, 21, 1438 https://doi.org/10.1021/om011051n
  34. Okuda, J.; Rushkin, I. L. Macromolecules 1993, 26, 5530 https://doi.org/10.1021/ma00072a036
  35. Okuda, J.; Kleinhann, T.; Konig, P.; Taden, I.; Ngo, S.; Rushkin, I. L. Macromol. Symp. 1995, 95, 195
  36. Takeuchi, D.; Watanabe, Y.; Aida, T.; Inoue, S. Macromolecules 1995, 28, 651 https://doi.org/10.1021/ma00106a035
  37. Takeuchi, D.; Aida, T. Macromolecules 1996, 29, 8096 https://doi.org/10.1021/ma960937d
  38. Takeuchi, D.; Nakamura, T.; Aida, T. Macromolecules 2000, 33, 725 https://doi.org/10.1021/ma991441+
  39. Takeuchi, D.; Aida, T. Macromolecules 2000, 33, 4607 https://doi.org/10.1021/ma000377p
  40. Takashima, Y.; Nakayama, Y.; Watanabe, K.; Itono, T.; Ueyama, N.; Nakamura, A.; Yasuda, H.; Harada, A. Macromolecules 2002, 35, 7538 https://doi.org/10.1021/ma0204711
  41. Kim, Y.; Jnaneshwara, G. K.; Verkade, J. G. Inorg. Chem. 2003, 42, 1437 https://doi.org/10.1021/ic026139n
  42. Kim, Y.; Verkade, J. G. Organometallics 2002, 21, 2395 https://doi.org/10.1021/om0110686
  43. Kim, Y.; Verkade, J. G. Macromol. Rapid Commun. 2002, 23, 917 https://doi.org/10.1002/1521-3927(20021001)23:15<917::AID-MARC917>3.0.CO;2-C
  44. Kim, Y.; Kapoor, P. N.; Verkade, J. G. Inorg. Chem. 2002, 41, 4834 https://doi.org/10.1021/ic0257571
  45. Mun, S.-D.; Hong, Y.; Kim, Y. Bull. Korean Chem. Soc. 2007, 28(4), 698-700 https://doi.org/10.5012/bkcs.2007.28.4.698
  46. Chabot, F.; Vert, M.; Chapelle, S.; Granger, P. Polymer 1983, 24, 53 https://doi.org/10.1016/0032-3861(83)90080-0
  47. Hayakawa, M.; Mitani, M.; Yamada, T.; Mukaiyama, T. Macromol. Rapid Commun. 1996, 17, 865 https://doi.org/10.1002/marc.1996.030171204
  48. Hayakawa, M.; Mitani, M.; Yamada, T.; Mukaiyama, T. Macromol. Chem. Phys. 1997, 198, 1305 https://doi.org/10.1002/macp.1997.021980502
  49. McLain, S. J.; Ford, T. M.; Drysdale, N. E. Polym. Prepr. (Div. Polym. Chem., Am. Chem. Soc.) 1992, 33(2), 463
  50. Stevels, W. M.; Ankone, M. J. K.; Dijkstra, P. J.; Feijen, J. Macromolecules 1996, 29, 3332 https://doi.org/10.1021/ma951813o
  51. Stevels, W. M.; Ankone, M. J. K.; Dijkstra, P. J.; Feijen, J. Macromolecules 1996, 29, 6132 https://doi.org/10.1021/ma9605311
  52. Evans, W. J.; Kataumata, H. Macromolecules 1994, 27, 2330 https://doi.org/10.1021/ma00086a056
  53. Evans, W. J.; Katsumata, H. Macromolecules 1994, 27, 4011 https://doi.org/10.1021/ma00092a048
  54. Agarwal, S.; Mast, C.; Dehnicke, K.; Greiner, A. Macromol. Rapid Commun. 2000, 21, 195 https://doi.org/10.1002/(SICI)1521-3927(20000301)21:5<195::AID-MARC195>3.0.CO;2-4
  55. Shen, Y.; Shen, Z.; Zhang, Y.; Yao, K. Macromolecules 1996, 29, 8289 https://doi.org/10.1021/ma9518060
  56. Deng, X. M.; Xiong, C. D.; Cheng, L. M.; Xu, R. P. J. Polym. Sci.; Part C: Polym. Lett. 1990, 28, 411 https://doi.org/10.1002/pol.1990.140281303
  57. Rashkov, I.; Espartero, J. L.; Manolova, N.; Vert, M. Macromolecules 1996, 29, 57 https://doi.org/10.1021/ma950531l
  58. Cerrai, P.; Guerra, G. D.; Lelli, L.; Tricoli, M. J. Mater. Sci.: Mater. Med. 1994, 5, 33 https://doi.org/10.1007/BF00121151
  59. Gan, Z. H.; Jiang, B. Z.; Jhang, J. J. Appl. Polym. Sci. 1996, 59, 961 https://doi.org/10.1002/(SICI)1097-4628(19960207)59:6<961::AID-APP8>3.0.CO;2-N
  60. Youxin, L.; Kissel, T. J. Controlled Release 1993, 27, 247 https://doi.org/10.1016/0168-3659(93)90155-X
  61. Jedlinski, Z.; Kercok, P.; Walach, W.; Janeczek, H.; Radecka, I. Makromol. Chem. 1993, 194, 1681 https://doi.org/10.1002/macp.1993.021940616
  62. Kricheldorf, H. R.; Meier-Haack, J. Makromol. Chem. 1993, 194, 715
  63. Bogdanov, B.; Vidts, A.; Van Den Bulke, A.; Verbeeck, R.; Schacht, E. Polymer 1998, 39, 1631 https://doi.org/10.1016/S0032-3861(97)00444-8
  64. Yuan, M.; Wang, Y.; Li, X.; Xiong, C.; Deng, X. Macromolecules 2000, 33, 1613 https://doi.org/10.1021/ma991388p
  65. Lenoir, S.; Riva, R.; Lou, X.; Detrembleur, Ch.; Jerome, R.; Lecomte, Ph. Macromolecules 2004, 37, 4055 https://doi.org/10.1021/ma035003l
  66. Detrmbleur, C.; Mazza, M.; Lou, X.; Halleux, O.; Lecomte, Ph.; Mecerreyes, D.; Hedrick, J. L.; Jerome, R. Macromolecules 2000, 33, 7751 https://doi.org/10.1021/ma000488o
  67. Lim, S. K.; Choi, B. H.; Min, Y. S.; Kim, D. S.; Yoon, I.; Lee, S. S.; Lee, I. M. J. Organomet. Chem. 2004, 689, 224 https://doi.org/10.1016/j.jorganchem.2003.10.008

Cited by

  1. Titanium complexes based on aminodiol ligands for the ring-opening polymerization of ε-caprolactone, rac-β-butyrolactone, and trimethylene carbonate vol.49, pp.24, 2011, https://doi.org/10.1002/pola.24986
  2. Backbone-Substituted β-Ketoimines and Ketoiminate Clusters: Transoid Li2O2 Squares and D2-Symmetric Li4O4 Cubanes. Synthesis, Crystallography and DFT Calculations vol.5, pp.2, 2017, https://doi.org/10.3390/inorganics5020030
  3. Metal catalysts for ε-caprolactone polymerisation vol.1, pp.6, 2010, https://doi.org/10.1039/b9py00334g