DOI QR코드

DOI QR Code

Photochemical Hydrogen Evolution in K4Nb6O17 Semiconductor Particles Sensitized by Phosphonated Trisbipyridine Ruthenium Complexes

  • Jung, Young-Hee (Department of Chemistry, Pukyong National University) ;
  • Shim, Hyun-Kwan (Department of Chemistry, Pukyong National University) ;
  • Kim, Hyun-Woo (Department of Chemistry, Pukyong National University) ;
  • Kim, Yeong-Il (Department of Chemistry, Pukyong National University)
  • Published : 2007.06.20

Abstract

Three different phosphonated trisbipyridine ruthenium complexes, [(4-CH3-4'-CH2PO(OH)2-2,2'-bipyridine)- (bpy)2Ru]·(PF6)2 (Ru-P1), [(4-CH3-4'-CH2PO(OH)2-2,2'-bipyridine)3Ru]·(PF6)2 (Ru-P2), and [(4,4'-CH2PO- (OH)2-2,2'-bipyridine)3Ru]·(PF6)2 (Ru-P3) were synthesized and their photochemical and electrochemical properties were studied. These ruthenium complexes were strongly adsorbed on the surface of the layered metal oxide semiconductor K4Nb6O17 that was partially acid-exchanged and sensitized up to pH 10, while the carboxylated ruthenium complex, (4,4'-COOH-2,2'-bipyridine)3Ru·Cl2 (Ru-C) that was previously studied was sensitized only below pH 4. The visible light water reduction at K4Nb6O17 that was internally platinized and sensitized by these phosphonated Ru-complexes was comparatively studied using a reversible electron donor iodide.

Keywords

References

  1. Dunn, S. Int. J. Hydrogen Energy 2002, 27, 235 https://doi.org/10.1016/S0360-3199(01)00131-8
  2. Bak, T.; Nowotny, J.; Rekas, M.; Sorrell, C. C. Int. J. Hydrogen Energy 2002, 27, 991 https://doi.org/10.1016/S0360-3199(02)00022-8
  3. Domen, K.; Kudo, A.; Shinozaki, A.; Tanaka, A.; Maruya, K.; Onishi, T. J. Chem. Soc. Chem. Comm. 1986, 356
  4. Sayama, K.; Tanaka, A.; Domen, K.; Maruya, K.; Onishi, T. J. Phys. Chem. 1991, 95, 1345 https://doi.org/10.1021/j100156a058
  5. Miseki, Y.; Kato, H.; Kudo, A. Chem. Lett. 2005, 34, 54 https://doi.org/10.1246/cl.2005.54
  6. Yamasita, D.; Takata, T.; Hara, M.; Kondo, J. N.; Domen, K. Sol. State Ion. 2004, 172, 591 https://doi.org/10.1016/j.ssi.2004.04.033
  7. Kudo, A.; Kato, H.; Tsuji, I. Chem. Lett. 2004, 33, 1534 https://doi.org/10.1246/cl.2004.1534
  8. O'Regan, B.; Grätzel, M. Nature 1991, 353, 737 https://doi.org/10.1038/353737a0
  9. Gratzel, M. Nature 2001, 414, 338 https://doi.org/10.1038/35104607
  10. Shin, Y.-J.; Kim, K. S.; Park, N.-G.; Kang, S. R.; Cang, S. H. Bull. Korean Chem. Soc. 2005, 26, 1929 https://doi.org/10.5012/bkcs.2005.26.12.1929
  11. Kim, K. M.; Park, N.-G.; Kang, M. G.; Ryu, K. S.; Chang, S. H. Bull. Korean Chem. Soc. 2006, 27, 322 https://doi.org/10.5012/bkcs.2006.27.2.322
  12. Gerischer, H. Photochem. Photobiol. 1972, 16, 243 https://doi.org/10.1111/j.1751-1097.1972.tb06296.x
  13. Kim, Y. I.; Salim, S. M.; Huq, J.; Mallouk, T. E. J. Am. Chem. Soc. 1991, 113, 9561 https://doi.org/10.1021/ja00025a021
  14. Kim, Y. I.; Atherton, S. J.; Brigham, E. S.; Mallouk, T. E. J. Phys. Chem. 1993, 97, 11802 https://doi.org/10.1021/j100147a038
  15. Kim, Y. I.; Keller, S. W.; Krueger, J. S.; Yonemoto, E. H.; Saupe, G. B.; Mallouk, T. E. J. Phys. Chem. B 1997, 101, 2491 https://doi.org/10.1021/jp962539i
  16. Desilvestro, J.; Grätzel, M.; Kavan, L.; Moser, J. J. Am. Chem. Soc. 1985, 107, 2988 https://doi.org/10.1021/ja00296a035
  17. Yan, S. G.; Hupp, J. T. J. Phys. Chem. 1996, 100, 6867 https://doi.org/10.1021/jp953180l
  18. Pechy, P.; Rotzinger, F. P.; Nazeerudin, M. K.; Kohle, O.; Zakeeruddin, S. M.; Humphry-Baker, R.; Grätzel, M. J. Chem. Soc. Chem. Commun. 1995, 65
  19. Trammell, S. A.; Wimbish, J. C.; Odobel, F.; Gallagher, L. A.; Narula, P. M.; Meyer, T. J. J. Am. Chem. Soc. 1998, 120, 13248 https://doi.org/10.1021/ja9821854
  20. Zaban, A.; Ferrere, S.; Gregg, B. A. J. Phys. Chem. B 1998, 102, 452 https://doi.org/10.1021/jp972924n
  21. Gillaizeau-Gauthier, I.; Odobel, F.; Alebbi, M.; Argazzi, R.; Costa, E.; Bignozzi, C. A.; Qu, P.; Meyer, G. J. Inorg. Chem. 2001, 40, 6073
  22. Sprintschnik, G. H. W.; Kirsch, P. P.; Whitten, D. G. J. Am. Chem. Soc. 1977, 99, 4947 https://doi.org/10.1021/ja00457a010
  23. Park, J. W.; Ahn, J.; Lee, C. J. Photochem. Photobiol. A: Chem. 1995, 86, 89 https://doi.org/10.1016/1010-6030(94)03928-N
  24. Gould, S.; Strouse, G. S.; Meyer, T. J.; Sullivan, B. P. Inorg. Chem. 1991, 30, 2942 https://doi.org/10.1021/ic00014a022
  25. Zabri, H.; Gillaizeau, I.; Bignozzi, C. A.; Caramori, S.; Charlot, M.-F.; Cano-Boquera, J.; Odobel, F. Inorg. Chem. 2003, 42, 6655 https://doi.org/10.1021/ic034403m
  26. Montalti, M.; Wadhwa, S.; Kim, W. Y.; Kipp, R. A.; Schmehl, R. H. Inorg. Chem. 2000, 39, 76 https://doi.org/10.1021/ic991143t
  27. Giordano, P. J.; Bock, C. R.; Wrighton, M. S.; Interrante, L. V.; Williams, R. F. X. J. Am. Chem. Soc. 1977, 99, 3187 https://doi.org/10.1021/ja00451a066
  28. Nassau, K.; Shiever, J. W.; Bernstein, J. L. J. Electrochem. Soc. 1969, 116, 348 https://doi.org/10.1149/1.2411844
  29. Kinomura, N.; Kumada, N.; Muto, K. J. Chem. Soc. Dalton Trans. 1985, 234
  30. Saupe, G. B.; Mallouk, T. E.; Kim, W.; Schmehl, R. H. J. Phys. Chem. B 1997, 101, 2508 https://doi.org/10.1021/jp9625319

Cited by

  1. Directed assembly of barium titanate nanopeapods via solvothermal processing with a mixed surfactant system vol.16, pp.1, 2007, https://doi.org/10.1080/17458080.2021.1962006
  2. Interfacial Electron Flow Control by Double Nano-architectures for Efficient Ru-Dye-Sensitized Hydrogen Evolution from Water vol.4, pp.12, 2007, https://doi.org/10.1021/acsaem.1c03028