DOI QR코드

DOI QR Code

Limitations of the Transition State Variation Model. Part 8. Dual Reaction Channels for Solvolyses of 3,4-Dimethoxybenzenesulfonyl Chloride

  • Koo, In-Sun (Department of Chemistry Education and The Research Institute of Natural Science, Gyeongsang National University) ;
  • Kwon, Eun-Ju (Department of Chemistry Education and The Research Institute of Natural Science, Gyeongsang National University) ;
  • Choi, Ho-June (Department of Chemistry, Gyeongsang National University) ;
  • Yang, Ki-Yull (Department of Chemistry Education and The Research Institute of Natural Science, Gyeongsang National University) ;
  • Park, Jong-Keun (Department of Chemistry Education and The Research Institute of Natural Science, Gyeongsang National University) ;
  • Lee, Jong-Pal (Department of Chemistry, Dong-A University) ;
  • Lee, Ikc-Hoon (Department of Chemistry, Inha University) ;
  • Bentley, T. William (Department of Chemistry, University of Wales)
  • 발행 : 2007.12.20

초록

Solvolyses of 3,4-dimethoxybenzenesulfonyl chloride (DSC) in water, D2O, CH3OD, and in aqueous binary mixtures of acetone, acetonitrile, 1,4-dioxane, ethanol, methanol, and 2,2,2-trifluoroethanol (TFE) have been investigated at 25.0 oC. Kinetic solvent isotope effects (KSIE) in water and in methanol and product selectivities in alcohol-water mixtures are also reported. The Grunwald-Winstein plot of first-order rate constants for the solvolyic reaction of DSC with YCl shows marked dispersions into separated lines for various aqueous mixtures. With use of the extended Grunwald-Winstein equation, the l and m values obtained are 1.12 and 0.58 respectively for the solvolyses of DSC. The relatively large magnitude of l is consistent with substantial nucleophilic solvent assistance. From Grunwald-Winstein plots the rate data are dissected approximately into contributions from two competing reaction channels. This interpretation is supported for alcohol-water mixtures by the trends of product selectivities, which show a maximum for ethanol-water mixtures. From the KSIE of 1.45 in methanol, it is proposed that the reaction channel favored in methanolwater mixtures and in all less polar media is general-base catalysed and/or is possibly (but less likely) an addition-elimination pathway. Also, the KISE value of 1.35 for DSC in water is expected for SN2-SN1 processes, with minimal general base catalysis, and this mechanism is proposed for solvolyses in the most polar media.

키워드

참고문헌

  1. Barker, J. W.; Nathan, W. W. J. Chem. Soc. 1936, 236 https://doi.org/10.1039/jr9360000236
  2. Swain, C. G.; Langsdorf, W. P. J. Am. Chem. Soc. 1951, 73, 2813 https://doi.org/10.1021/ja01150a113
  3. Rossel, J. B. J. Chem. Soc. 1963, 5183 https://doi.org/10.1039/jr9630005183
  4. Yoh, S. D.; Tsuno, Y.; Yukawa, Y. J. Kor. Chem. Soc. 1984, 28, 433
  5. Yoh, S. D. J. Kor. Chem. Soc. 1975, 19, 240
  6. Lee, I.; Rhyu, K. B.; Lee, B. C. J. Kor. Chem. Soc. 1979, 23, 277
  7. Rogne, O. J. Chem. Soc. (B) 1968, 1294
  8. Kim, W. K.; Lee, I. J. Kor. Chem. Soc. 1974, 18, 8
  9. Kevill, D. N.; Park, B.-C.; Park, K.-H.; D'Souza, M. J.; Yaakoubd, L.; Milynarski, S. L.; Kyong, J. B. Org. Biomol. Chem. 2006, 4, 1580 https://doi.org/10.1039/b518129a
  10. Ciuffarin, E.; Senatore, L.; Isola, M. J. Chem. Soc. Perkin Trans. 2 1972, 468
  11. Stangeland, L. J.; Senatore, L.; Ciuffarin, E. J. Chem. Soc. Perkin Trans. 2 1972, 852
  12. Hall, H. K. Jr. J. Am. Chem. Soc. 1956, 78, 1450 https://doi.org/10.1021/ja01588a048
  13. Robertson, R. E.; Laughton, P. M. Can. J. Chem. 1957, 35, 1319 https://doi.org/10.1139/v57-175
  14. Rossall, B.; Robertson, R. E. Can. J. Chem. 1971, 49, 1451 https://doi.org/10.1139/v71-237
  15. Ballistreri, F. P.; Cantona, A.; Maccarone, E.; Tomaselli, G. A.; Tripolone, M. J. Chem. Soc. Perkin Trans. 2 1981, 438
  16. Koo, I. S.; Yang, K.; Kang, K.; Lee, I.; Bentley, T. W. J. Chem. Soc. Perkin Trans. 2 1998, 1175
  17. Koo, I. S.; Yang, K.; Kang, K.; Lee, I. Bull. Kor. Chem. Soc. 1998, 19, 968
  18. Koo, I. S.; Lee, J. S.; Yang, K.; Kang, K.; Lee, I. Bull. Kor. Chem. Soc. 1999, 20, 573
  19. Bentley, T. W.; Koo, I. S. J. Chem. Soc. Perkin Trans. 2 1989, 1385
  20. Bentley, T. W.; Carter, G. E. J. Am. Chem. Soc. 1982, 104, 5741 https://doi.org/10.1021/ja00385a031
  21. Bentley, T. W.; Harris, H. C.; Koo, I. S. J. Chem. Soc. Perkin Trans. 2 1988, 783
  22. Bentley, T. W.; Harris, H. C. J. Chem. Soc. Perkin Trans. 2 1986, 619
  23. Koo, I. S.; An, S. K.; Yang, K.; Koh, H. J.; Choi, M. H.; Lee, I. Bull. Korean Chem. Soc. 2001, 22, 842
  24. Bentley, T. W.; Bowen, C. T.; Morten, D. H.; Schleyer, P. v. R. J. Am. Chem. Soc. 1981, 103, 5466 https://doi.org/10.1021/ja00408a031
  25. Winstein, S.; Grunwald, E. J. Am. Chem. Soc. 1948, 70, 846 https://doi.org/10.1021/ja01182a117
  26. Bentley, T. W.; Dau-Schmidt, J.-P.; Llewllyn, G.; Mayr, H. J. Org. Chem. 1992, 57, 2387
  27. Winstein, S.; Fainberg, A.; Grunwald, E. J. Am. Chem. Soc. 1957, 79, 4146 https://doi.org/10.1021/ja01572a046
  28. Fainberg, A. H.; Winstein, S. J. Am. Chem. Soc. 1957, 79, 1957
  29. Winstein, S.; Grunwald, E.; Jones, H. W. J. Am. Chem. Soc. 1951, 73, 2700 https://doi.org/10.1021/ja01150a078
  30. Kevill, D. N.; Ismail, NHJ.;.D'Souza, M. J. J. Org. Chem. 1994, 59, 6303 https://doi.org/10.1021/jo00100a036
  31. Kevill, D. N.; D'Souza, M. J. J. Chem. Soc. Perkin Trans. 2 1995, 973
  32. Kevill, D. N.; D'Souza, M. J. J. Chem. Soc. Perkin Trans. 2 1997, 257
  33. Kevill, D. N.; Bond, M. W.; D'Souza, M. J. J. Org. Chem. 1997, 62, 7869 https://doi.org/10.1021/jo970657b
  34. Harris, J. M.; Clark, D. C.; Becker, A.; Fagan, J. F. J. Am. Chem. Soc. 1974, 96, 4478 https://doi.org/10.1021/ja00821a021
  35. Harris, J. M.; Becker, A.; Fagan, J. F.; Walden, F. A. J. Am. Chem. Soc. 1974, 96, 4484 https://doi.org/10.1021/ja00821a022
  36. Koo, I. S.; Yang, K.; Park, J. K.; Woo, M. Y.; Cho, J. M.; Lee, J. P.; Lee, I. Bull. Kor. Chem. Soc. 2005, 26, 1241 https://doi.org/10.5012/bkcs.2005.26.8.1241
  37. Dey, S.; Adhikary, K. K.; Kim, C. K.; Lee, B.-S.; Lee, H. W. Bull. Kor. Chem. Soc. 2005, 26, 776
  38. Oh, H. K.; Ku, M. H.; Lee, H. W. Bull. Kor. Chem. Soc. 2005, 26, 935 https://doi.org/10.5012/bkcs.2005.26.6.935
  39. Karton, Y.; Pross, A. J. Chem. Soc. Perkin Trans. 2 1977, 1860
  40. McLennan, D. J.; Martin, P. L. J. Chem. Soc. Perkin Trans. 2 1982, 1099
  41. Bentley, T. W.; Ryu, Z. H. J. Chem. Soc. Perkin Trans. 2 1994, 761
  42. Koo, I. S.; Yang, K.; Kang, K.; Lee, I.; Bentley, T. W. J. Chem. Soc. Perkin Trans. 2 1998, 1179
  43. Bentley, T. W.; Harris, H. C. J. Org. Chem. 1988, 53, 724 https://doi.org/10.1021/jo00239a004
  44. Bentley, T. W.; Jones, R. O. J. Chem. Soc., Perkin Trans. 2 1993, 2351
  45. Bentley, T. W.; Jones, R. O.; Koo, I. S. J. Chem. Soc. Perkin Trans. 2 1994, 753
  46. Jones, R. O. M. Phil. Thesis; University of Wales: 1991
  47. Koo, I. S.; Bentley, T. W.; Lee, I. J. Kor. Chem. 1990, 34, 304
  48. Bentley, T. W.; Llewellyn, G.; Ryu, Z. H. J. Org. Chem. 1998, 63, 4654 https://doi.org/10.1021/jo980109d
  49. Koo, I. S.; Kang, D. H.; Bentley, T. W.; Lee, I. J. Chem. Soc. Perkin Trans. 2 1991, 175
  50. Koo, I. S.; Yang, K.; An, S. K.; Lee, C.-K.; Lee, I. Bull. Kor. Chem. Soc. 2000, 21, 1011
  51. Bentley, T. W.; Koo, I. S.; Norman, S. J. J. Org. Chem. 1991, 56, 1604 https://doi.org/10.1021/jo00004a048
  52. Schadt, F. L.; Bentley, T. W.; Schleyer, P. v. R. J. Am. Chem. Soc. 1976, 98, 7667 https://doi.org/10.1021/ja00440a037
  53. Kevil, D. N.; Lin, G. M. L. J. Am. Chem. Soc. 1979, 101, 3916 https://doi.org/10.1021/ja00508a032
  54. Senatore, L.; Sagramora, L.; Ciuffarin, E. J. Chem. Soc. Perkin Trans. 2 1974, 722
  55. Rogne, O. J. Chem. Soc. (B) 1969, 663
  56. Gordon, I. M.; Maskill, H.; Ruasse, M. F. Chem. Soc. Rev. 1989, 18, 123 https://doi.org/10.1039/cs9891800123
  57. Kice, J. L. Adv. Phys. Org. Chem. 1980, 17, 156
  58. Aronovitch, H.; Pross, A. J. Chem. Soc. Perkin Trans. 2 1978, 540
  59. Arcoria, A.; Ballistreri, F. P.; Spina, E.; Tomaselli, G. A.; Maccarone, E. J. Chem. Soc. Perkin Trans. 2 1988, 1793
  60. Robertson, R. E. Prog. Phys. Org. Chem. 1967, 4, 213 https://doi.org/10.1002/9780470171837.ch5

피인용 문헌

  1. Correlation of the Rates of Solvolysis of Two Arenesulfonyl Chlorides and of trans-β-Styrenesulfonyl Chloride — Precursors in the Development of New Pharmaceuticals vol.9, pp.12, 2008, https://doi.org/10.3390/ijms9122639
  2. Concerted Solvent Processes for Common Sulfonyl Chloride Precursors used in the Synthesis of Sulfonamide-based Drugs vol.9, pp.5, 2008, https://doi.org/10.3390/ijms9050914
  3. Aminolysis of Y- Substituted Phenyl Benzenesulfonates in MeCN: Effect of Medium on Reactivity and Reaction Mechanism vol.32, pp.spc8, 2011, https://doi.org/10.5012/bkcs.2011.32.8.2955
  4. Correlation of the Rates of Solvolyses of 4-Methylthiophene-2-carbonyl Chloride Using the Extended Grunwald-Winstein Equation vol.33, pp.2, 2012, https://doi.org/10.5012/bkcs.2012.33.2.499
  5. 2 spectrum. Rate constants and product selectivities for solvolyses of benzenesulfonyl chlorides in aqueous alcohols vol.22, pp.9, 2009, https://doi.org/10.1002/poc.1522
  6. Evaluation of Methylthio and Phenylthio Group Effects in the Solvolyses of 2-Chloro-2-(methylthio)acetone and 2-Chloro-2-(phenylthio)acetophenone Using Extended Grunwald-Winstein Equations vol.29, pp.11, 2007, https://doi.org/10.5012/bkcs.2008.29.11.2145
  7. Physical Chemistry Research Articles Published in the Bulletin of the Korean Chemical Society: 2003-2007 vol.29, pp.2, 2008, https://doi.org/10.5012/bkcs.2008.29.2.450
  8. Effect of Leaving Group in the Hydrolyses of N-Cyclopropanecarbonylimidazoles vol.29, pp.7, 2007, https://doi.org/10.5012/bkcs.2008.29.7.1403
  9. N-Propionylbenzimidazole과 N-Propionyl-5-nitrobenzimidazole의 가수분해반응 vol.52, pp.4, 2007, https://doi.org/10.5012/jkcs.2008.52.4.450
  10. N-Cyclopropanecarbonylimidazole과 N-Propionylimidazole의 가수분해반응 vol.53, pp.2, 2007, https://doi.org/10.5012/jkcs.2009.53.2.213
  11. N-Cyclopropanecarbonyl-4-methylimidazole과 N-Propionyl-4-methylimidazole의 가수분해반응 vol.53, pp.6, 2009, https://doi.org/10.5012/jkcs.2009.53.6.814
  12. Evidence for Existence of Intermediate in Acid Hydrolyses of Sulfinamide and Carboxamide vol.31, pp.6, 2007, https://doi.org/10.5012/bkcs.2010.31.6.1773
  13. Correlation of the Rates of Solvolysis of 4-Morpholinecarbonyl Chloride Using the Extended Grunwald-Winstein Equation vol.31, pp.7, 2010, https://doi.org/10.5012/bkcs.2010.31.7.1963
  14. Correlation of the Rates of Solvolysis of 1-Piperidincarbonyl Chloride Using the Extended Grunwald-Winstein Equation vol.32, pp.11, 2007, https://doi.org/10.5012/bkcs.2011.32.11.3941