DOI QR코드

DOI QR Code

Synthesis of Oxazolidinone Phosphonate Derivatives, Part II

  • Hwang, Jae-Min (Department of Environmental & Applied Chemistry, College of Engineering, Kangnung National University) ;
  • Yeom, Sung-Ho (Department of Environmental & Applied Chemistry, College of Engineering, Kangnung National University) ;
  • Jung, Kang-Yeoun (Department of Environmental & Applied Chemistry, College of Engineering, Kangnung National University)
  • Published : 2007.05.20

Abstract

Several oxazolidinones, a new class of synthetic antibacterial agents, have shown biological activity against multidrug-resistant gram positive organisms such as staphylococci, streptococci, and enterococci. Previous results of our studies with benzoxazolidinone phosphonate derivatives have demonstrated very low antibacterial activity. In the course of our studies directed towards the discovery of noble antibacterial agents, we have synthesized several new derivatives of oxazolidinone phosphonates prepared efficiently from commercially available amino acids. These compounds are tested for in vitro antibacterial activity and one of the compounds showed promising results allowing us to pursue further studies.

Keywords

References

  1. Brickner, S. J. Curr. Pharm. Des. 1996, 2, 175
  2. Barbachyn, M. R.; Ford, C. W. Angew. Chem., Int. Ed. 2003, 42, 2010 https://doi.org/10.1002/anie.200200528
  3. Hutchinson, D. K. Curr. Top. Med. Chem. 2003, 3, 1021 https://doi.org/10.2174/1568026033452195
  4. Nilus, A. M. Curr. Opin. Invest. Drugs 2003, 4, 149
  5. Renslo, A. R.; Gao, H.; Jaishankar, P.; Venkatachalam, R.; Gomez, M.; Blais, J.; Huband, M.; Prasad, J. V. N. V.; Gordeeva, M. F. Bioorg. Med. Chem. Lett. 2006, 16, 1126 https://doi.org/10.1016/j.bmcl.2005.11.093
  6. Slee, A. M.; Wuonola, M. A.; McRipley, R. J.; Zajac, I.; Zawada, M. J.; Batholomew, P. T.; Gregory, W. A.; Forbes, M. Abstracts of 27th Interscience Conference on Antimicrobial Agents and Chemotherapy, New York, Oct. 4-7, 1987; abstract No. 244
  7. Brickner, S. J.; Hutchinson, D. K.; Barbachyn, M. R.; Manninen, P. R.; Ulanowicz, D. A.; Garmon, S. A.; Grega, K. C.; Hendges, S. K.; Toops, D. S.; Ford, C. W.; Zurenko, G. E. J. Med. Chem. 1996, 39, 673 https://doi.org/10.1021/jm9509556
  8. Gonzales, R. D.; Schreckenberger, P. C.; Graham, M. B.; Kelkar, S.; DenBesten, K.; Quinn, J. P. Lancet 2001, 357, 1179 https://doi.org/10.1016/S0140-6736(00)04376-2
  9. Tsiodras, S.; Gold, H. S.; Sakoulas, G.; Eliopoulas, G. M.; Wennerstein, C.; Venkatraman, L.; Moellering, R. C., Jr.; Ferro, M. J. Lancet 2001, 358, 207 https://doi.org/10.1016/S0140-6736(01)05410-1
  10. Tsiodras, S.; Gold, H. S.; Sakoulas, G.; Eliopoulos, G. M.; Wennersten, C.; Venkataraman, L.; Moellering, R. C.; Ferraro, M. J. Lancet 2001, 358, 207 https://doi.org/10.1016/S0140-6736(01)05410-1
  11. Jung, K. Y.; Hwang, J. M. Bull. Korean Chem. Soc. 2004, 25, 1326 https://doi.org/10.1007/s11814-008-0217-9
  12. Jung, K. Y.; Lee, M. Y.; McClure, C. K. Phosphorus, Sulfur, and Silicon 1999, 147, 141 https://doi.org/10.1080/10426509908053551
  13. McClure, C. K.; Hausel, R. C.; Hansen, K. B.; Grote, C. W.; Jung, K. Y. Phosphorus, Sulfur, and Silicon 1996, 111, 63 https://doi.org/10.1080/10426509608054692
  14. McClure, C. K.; Jung, K. Y. J. Org. Chem. 1991, 56, 867 https://doi.org/10.1021/jo00002a072
  15. Jung, K. Y.; Lee, M. Y. J. Ind. & Eng. Chem. 1999, 5, 224
  16. Herweh, J. E.; Kauffman, W. Tetrahedron Lett. 1971, 809
  17. Cardillo, G.; Orena, M.; Sandri, S. J. Org. Chem. 1986, 51, 713 https://doi.org/10.1021/jo00355a023
  18. Gregory, W. A.; Brittelli, D. R.; Wang, C. L. J.; Kezar, H. S.; Carlson, R. K.; Park, C. H.; Corless, P. F.; Miller, S. J.; Rajagopalan, P.; Wuonola, M. A.; McRipley, R. J.; Eberly, V. S.; Slee, A. M.; Forbes, M. J. Med. Chem. 1990, 33, 2569 https://doi.org/10.1021/jm00171a035
  19. Sibi, M. P.; Renhowe, P. A. Tetrahedron Lett. 1990, 31, 7407 https://doi.org/10.1016/S0040-4039(00)88501-9
  20. Sibi, M. P.; Rutherford, D.; Renhowe, P. A.; Li, B. J. Am. Chem. Soc. 1999, 121, 7509 https://doi.org/10.1021/ja9906249
  21. Neri, C.; Williams, J. M. J. Adv. Synth. Catal. 2003, 345, 835 https://doi.org/10.1002/adsc.200303006
  22. Jung, M. E.; Jung, Y. H. Tetrahedron Lett. 1989, 30, 6637 https://doi.org/10.1016/S0040-4039(00)70638-1

Cited by

  1. Molecular structure investigation and biological evaluation of Michael adducts derived from dimedone vol.42, pp.5, 2016, https://doi.org/10.1007/s11164-015-2257-1
  2. Stereoselective synthesis of 4-hydroxymethyl-1,3-oxazolidin-2-one derivatives from novel 2-hydroxymethylaziridines vol.48, pp.17, 2018, https://doi.org/10.1080/00397911.2018.1490771
  3. Synthesis of Oxazolidinone Phosphonate Derivatives. Part 2. vol.38, pp.39, 2007, https://doi.org/10.1002/chin.200739162
  4. Synthetic Studies on Soraphen A: Synthesis of the C1-C9 Hemiketal Segment vol.29, pp.8, 2007, https://doi.org/10.5012/bkcs.2008.29.8.1445
  5. Niobium (V) Chloride Catalyzed Abramov Reaction: An Efficient Protocol for the Preparation of α-Hydroxy Phosphonates vol.29, pp.9, 2007, https://doi.org/10.5012/bkcs.2008.29.9.1781
  6. Synthesis and Biological Evaluation of Novel Substituted Pyrrolyl and Pyrazolyl Oxazolidinone Analogues vol.30, pp.8, 2007, https://doi.org/10.5012/bkcs.2009.30.8.1895
  7. Rapid, mild method for phosphonate diester hydrolysis: development of a one-pot synthesis of tenofovir disoproxil fumarate from tenofovir diethyl ester vol.66, pp.41, 2007, https://doi.org/10.1016/j.tet.2010.08.037
  8. Heterocyclization of 2-(2-phenylhydrazono)cyclohexane-1,3-dione to Synthesis Thiophene, Pyrazole and 1,2,4-triazine Derivatives with Anti-Tumor and Tyrosine Kinase Inhibitions vol.20, pp.10, 2007, https://doi.org/10.2174/1871520620666200310093911