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Molecular recognition of nucleosides or nucleotides is
attracting a great deal of interest due to their genetic func-
tions in living organisms.! Hydrophilic nature of nucleosides
and nucleotides allows only a conformationally well defined
receptor to form a hydrogen-bonded, electrostatic or hydro-
phobic complex with nucleosides or nucleotides in water.”
Recently, an anthracene derivative was reported to show a
higher affinity toward GTP over ATP owing to cooperative
interactions of hydrogen bonding and electrostatic inter-
actions between an imidazolium moiety and a phosphate
unit.>

We have developed various sugar receptors with hydro-
gen-bonding acceptors and donors.* Herein, we report a
novel Dr-symmetric fluorescent macrolactam. This host
possesses not only an aromatic cavity for 7~z interaction, but
also hydrogen-bonding donors/acceptors in the peripheral
site of the macrolactam for effective nucleoside recognition.

Macrolactam host was synthesized via the typical acid
chloride coupling method® in which 2,5-dimethyl-p-xylyl-
diamine was treated with 2,5-dimethoxyterephthaloyl chloride
in a high dilute condition® to afford the desired 2:2 macro-
cyclization product (H). The calculated structure shows that
the host has a large cavity with dimension of 10.5 A x 6.9 A
(Fig. 1. left}. The global minimum structure clearly indicates
that 7~ stacking interaction exists between the dimethoxy
aryl groups of H and the uracil base of uridine with
aromatic-aromatic surface distances of 3.56 and 3.55 A, and
one intermolecular H-bonding interaction also exists bet-
ween the carbonyl group of H and 2-OH group of uridine
(Fig. L. right).”

Owing to the characteristic fluorescence property of H.®
fluorescence titration was carried out in chloroform. Fluore-
scence emission intensities at Amax = 384 nm were recorded
after excitation at Ax = 331 nm (Fig. 2). Fluorescence
intensities of the host-guest complex increase upon addition
of sugars or nucleosides presumably due to the restricted
rotation of H.® The resulting fluorescence enhancements at
384 nm are shown in the inset of Figwe 3. The binding
stoichiometry between H and guests was also confirmed to
be 1:1 by Job’s plot (Fig. 4)."

Curve fitting of the host signals to a 1:1 binding isotherm
gives apparent dissociation constants of up to Kq = 107 M,
which are summarized in Table L.

While the dissociation constants between H and anomers
of D-glucose were found to be similar (3.99 x 10~ M for /!
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Figure 2. UV-vis and fluorescence spectra of H in CHCI; at 298 K.

Figure 1. Global minimum structures of H (left) and its uridine complex (right).
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Figure 3. Fluorescence titration of H and uridine in CHClz at 298

K. [H] =2.0 /M.
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Figure 4. Job’s plot between H and D-glucopyranosides at 298 K.
[H] + [G]= 2.0 M, each in 2.0 mL. Rectangular and circle
represent Fglucose and uridine, respectively.

and 5.38 x 107* M for « anomer), the binding affinity of H to
Pgalactose is three times lower than that of AD-glucose
(1.31 x 107 M for fD-galactose). This diastereoselectivity
for sugars plausibly results from the slight energetic differ-
ence in the intermolecular H-bonding pattemns due to the
varying degree of steric interaction between sugars and H.
This indicates that geometrical complementarities of H-
bonding partners are crucial in hydrogen bond-based mole-
cular recognition system.

It is noticeable that nucleosides, deoxythymidine (d-Thy)
and uridine (Url) show the comparable binding affinities
although they have fewer number of hydroxyl groups
compared with the pyranosides. Uridine shows much higher
binding affinity (1.72 x 10~ M) than A&D-glucose. Enhance-
ment in the binding affinity for nucleosides probably results
from the presence of msurface and H-bonding donors and
acceptors in the guests.

It is assumed that 77 stacking interaction between H and
nucleosides plays an important role in host-guest binding.
We have chosen several commercially available aromatic
guests to test this assumption. While benzene is weakly
bound to H (Ky=4.05 x 1072 M), the binding affinity of a 7
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Table 1. Dissociation constants between H and guests”

entry  guest structure name K (M}
HOH
Ho
1 "% ~\ 0ot AD-Glucose  3.99(+0.70) x 107
H H
HOH
2 s Ho a-D-Glucose  5.38(£3.22) x 107
HO H
H OOct
HOOH
3 4 Ho BD-Galactose  1.31(x0.58) x 107
HO OOct
[¢]
H H
(0}
\\E%LN,OQ
4 Thymidine  6.44(x5.88) x 107
HO_@AO ¥ 4 )
OH
o
ﬁl\N,Oct
50 o' o Uridine 1.72(0.23) x 107
OHOH

“Fluorescence litration of constant host concentration ¢2.0 4M) m CHCJ;
at 298 K. Fluotescence intensity at Aem = 384 mn (Aex = 331 nm) was
monitored after each addition of guest,

basic guest [,4-dimethoxybenzene was ¢.«. hundred times
enhanced (5.26 x 107 M). The binding affinity of a 7 acidic
guest dimethylterephthalate, however, was too small to
detenmine.

In conclusion, we have developed a novel fluorescent
macrolactam as an artificial receptor for nucleosides. The
receptor has shown high diastereoselectivity for sugars and
even higher affinities for nucleosides due to the intermole-
cular 7 stacking interaction as well as H-bonds between
the macrolactam and sugars/mucleosides.

Experimental

Acid chloride synthesis. To a solution of 400 mg (1.77
mmol) of 2,5-dimethoxyterephthalic acid in 20 mL of
dichloromethane was added cat. amount of DMF and 2.0
mL of 2 M oxalic acid chloride in dichloromethane (2 eq.
ex., 4.0 mmol). Resulting white suspension was stitred at rt
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Scheme 1. Synthetic scheme of macrolactam.
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under nitrogen for 3 hrs to afford a vellow clear solution. All
volatiles were removed under the reduced pressure, dried in
vacuum,

Cyclization. To a solution of p-xylyl diamine (1 eq. 1.77
mmol} and TEA (2 eq ex.} in 500 mL of dichloromethane
was dropwise added a solution of above crude 2,5-dimeth-
oxyterephthaloyl chloride in 50 mL of dichloromethane at ¢
°C' under nitrogen over a period of 2 hrs. Resulting vellow
solution was stirred for additional 24 hrs under nitrogen. All
volatiles are removed under reduced pressure and purified
by column chromatography. Column chromatography o
silica gel (CH2Clo:MeOH = 10:1, Ry =0.48) gave a greenish
mixture. Additional column chromatography on silica gel
(EtQAc, Ry = 0.30) gave the desired product, H as a white
solid in a 4.2% yield.

"H-NMR (300 MHz, CDCl;): 8.09 (t, J = 6.3 Hz, 4H of
NH), 7.68 (s, 4H of ArH, in 2,5-dimethoxybenzene), 7.06 (s,
4H of ArH in p-xylylene), 4.51 (d, J = 6.3 Hz, 8H of
ArCHoN), 3.90 (s, 12H of OCH3), 2.29 (s, 12H of ArCH,).

UV-vis (CHCL): &3nm = 3997 M~'em™, Fluorescence
(CHCl3): Aen =384 nin (A =331 i) in 2.0 z: M

Mass (FAB®, m-NBA ): sz 709 ([M+H], 50%)
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