DOI QR코드

DOI QR Code

Photodecomposition of Concentrated Ammonia over Nanometer-sized TiO2, V-TiO2, and Pt/V-TiO2 Photocatalysts

  • Choi, Hyung-Joo (School of Environmental Applied Chemistry, KyungHee University) ;
  • Kim, Jun-Sik (Environment and Resources Group, Korea Research Institute of Chemical Technology) ;
  • Kang, Mi-Sook (Department of Chemistry, College of Science, Yeungnam University)
  • Published : 2007.04.20

Abstract

To enhance the photodecomposition of concentrated ammonia into N2, Pt/V-TiO2 photocatalysts were prepared using solvothermal and impregnation methods. Nanometer-sized particles of 0.1, 0.5 and 1.0 mol% V-TiO2 were prepared solvothermally, and then impregnated with 1.0 wt% Pt. The X-ray diffraction (XRD) peaks assigned to V2O5 at 30.20 (010) and Pt metal at 39.80 (111) and 46.20 (200) were seen in the 1.0 wt% Pt/ 10.0 mol% V-TiO2. The particle size increased in the order: pure TiO2, V-TiO2 and Pt/V-TiO2 after thermal treatment at 500 °C, while their surface areas were in the reverse order. On X-ray photoelectron spectroscopy (XPS), the bands assigned to the Ti2p3/2 and Ti2p1/2 of Ti4+-O were seen in all the photocatalysts, and the binding energies increased in the order: TiO2 < Pt/V-TiO2 < V-TiO2. The XPS bands assigned to the V2p3/2 (517.85, 519.35, and 520.55 eV) and V2p1/2 (524.90 eV) in the V3+, V4+ and V5+ oxides appeared over V-TiO2, respectively, while the band shifted to a lower binding energy with Pt impregnation. The Pt components of Pt/ V-TiO2 were identified at 71.60, 73.80, 75.00 and 76.90 eV, which were assigned to metallic Pt 4f7/2, PtO 4f7/2, PtO2 4f7/2, and PtO 4f5/2, respectively. The UV-visible absorption band shifted closer towards the visible region of the spectrum in V-TiO2 than in pure TiO2 and; surprisingly, the Pt/V-TiO2 absorbed at all wavelengths from 200 to 800 nm. The addition of vanadium generated a new acid site in the framework of TiO2, and the medium acidic site increased with Pt impregnation. The NH3 decomposition increased with the amount of vanadium compared to pure TiO2, and was enhanced with Pt impregnation. NH3 decomposition of 100% was attained over 1.0 wt% Pt/1.0 mol% V-TiO2 after 80 min under illumination with 365 nm light, although about 10% of the ammonia was converted into undesirable NO2 and NO. Various intermediates, such as NO2, -NH2, -NH and NO, were also identified in the Fourier transform infrared (FT-IR) spectra. From the gas chromatography (GC), FT-IR and GC/mass spectroscopy (GC/MS) analyses, partially oxidized NO and NO2 were found to predominate over V-TiO2 and pure TiO2, respectively, while both molecules were reduced over Pt/V-TiO2.

Keywords

References

  1. Yu, J.; Zhao, X. Meter. Res. Bull. 2001, 36, 97 https://doi.org/10.1016/S0025-5408(00)00475-X
  2. Hattori, A.; Kawahara, T.; Suzuki, F.; Tada, H.; Ito, S. J. Colloid Interf. Sci. 2000, 232, 410 https://doi.org/10.1006/jcis.2000.7166
  3. Chen, M.-L.; Bae, J.-S.; Oh, W.-C. Bull. Korean Chem. Soc. 2006, 27, 1423 https://doi.org/10.5012/bkcs.2006.27.9.1423
  4. Kang, M.; Lee, S.-Y.; Chung, C.-H.; Cho, S. M.; Han, G. Y.; Kim, B.-W.; Yoon, K. J. J. Photochem. Photobiol. A: Chem. 2001, 144, 185
  5. Kang, M.; Choung, S. J.; Park, J. Y. Catalysis Today 2003, 87, 87 https://doi.org/10.1016/j.cattod.2003.09.011
  6. Jung, O.-J.; Kim, S.-H.; Cheong, K.-H.; Li, W.; Saha, S. I. Bull. Korean Chem. Soc. 2003, 24, 49 https://doi.org/10.5012/bkcs.2003.24.1.049
  7. Zhou, G.-W.; Lee, D. K.; Kim, Y. H.; Kim, C. W.; Kang, Y. S. Bull. Korean Chem. Soc. 2006, 27, 368 https://doi.org/10.5012/bkcs.2006.27.3.368
  8. Riggan, P. I.; Lockwood, R. N.; Lopez, E. N. Environ. Sci. Technol. 1985, 19, 971
  9. Son, Y.-H.; Jeon, M.-K.; Ban, J.-Y.; Kang, M.; Choung, S.-J. J. Ind. Eng. Chem. 2005, 11, 938
  10. Kang, M. Appl. Catal. B: Environ. 2002, 37, 187 https://doi.org/10.1016/S0926-3373(01)00303-4
  11. Lee, J. H.; Nam, W. S.; Kang, M.; Han, G. Y.; Kim, M.-S.; Ogino, K.; Miyata, S.; Choung, S.-J. Appl. Catal. A: General 2003, 244, 49 https://doi.org/10.1016/S0926-860X(02)00592-6
  12. Park, S.-H.; Lee, S.-C.; Kang, M.; Choung, S.-J. J. Ind. Eng. Chem. 2004, 10, 972
  13. Yeo, M.-K.; Kang, M. Water Research 2006, 40, 1906 https://doi.org/10.1016/j.watres.2005.12.034
  14. Kang, M.; Choi, D.-H.; Choung, S.-J. J. Ind. Eng. Chem. 2005, 11, 240
  15. Kang, M. J. Mol. Catal. 2003, 197, 173 https://doi.org/10.1016/S1381-1169(02)00586-1
  16. Wu, N.-L.; Lee, M.-S.; Pon, Z.-J.; Hsu, J.-Z. J. Photochem. Photobiol. A: Chem. 2004, 163, 277 https://doi.org/10.1016/j.jphotochem.2003.12.009
  17. Liu, Q.; Wu, X.; Wang, B.; Liu, Q. Mater. Res. Bull. 2002, 37, 2255 https://doi.org/10.1016/S0025-5408(02)00972-8
  18. Yu, J.; Zhao, X.; Zhao, Q.; Wang, G.. Mater. Chem. Phys. 2001, 68, 253 https://doi.org/10.1016/S0254-0584(00)00364-3
  19. Silversmit, G.; Depla, D.; Poelman, H.; Marin, G. B.; Gryse, R. D. J. Electron. Spectrosc. 2004, 135, 167 https://doi.org/10.1016/j.elspec.2004.03.004
  20. Li, Q.; Wang, K.; Zhang, S.; Yang, J.; Jin, Z. J. Mol. Catal. A: Chem. 2006, 258, 83 https://doi.org/10.1016/j.molcata.2006.05.030
  21. Tang, Y.; Zhang, L.; Wang, Y.; Zhou, Y.; Gao, Y.; Liu, C.; Xing, W.; Lu, T. J. Power Sources 2006, 162, 124 https://doi.org/10.1016/j.jpowsour.2006.07.024
  22. Mozzanega, H.; Herrmann, J.-M.; Pichat, P. J. Phys. Chem. 1979, 83, 2251

Cited by

  1. Characterization of metal (Ba, Al, Si, V, and W)-incorporated TiO2 and toluene photodecomposition in the presence of H2O vol.24, pp.6, 2007, https://doi.org/10.1007/s11814-007-0106-7
  2. Development and potential of new generation photocatalytic systems for air pollution abatement: an overview vol.4, pp.4, 2009, https://doi.org/10.1002/apj.321
  3. Visible Light Driven ZnFe2Ta2O9 Catalyzed Decomposition of H2S for Solar Hydrogen Production vol.28, pp.11, 2007, https://doi.org/10.5012/bkcs.2007.28.11.2089
  4. Catalytic Effects and Characteristics of Ni-based Catalysts Supported on TiO2-SiO2 Xerogel vol.28, pp.12, 2007, https://doi.org/10.5012/bkcs.2007.28.12.2288
  5. Physical Chemistry Research Articles Published in the Bulletin of the Korean Chemical Society: 2003-2007 vol.29, pp.2, 2008, https://doi.org/10.5012/bkcs.2008.29.2.450
  6. Surface Modification Reaction of Photocatalytic Titanium Dioxide with Triethoxysilane for Improving Dispersibility vol.31, pp.5, 2010, https://doi.org/10.5012/bkcs.2010.31.5.1275
  7. Tailoring Cadmium Composition on Titanium Dioxide to Achieve Enhanced Photocatalytic Glucose Fuel Cell Anode Performance vol.4, pp.11, 2007, https://doi.org/10.1021/acsaem.1c02121