DOI QR코드

DOI QR Code

An Essential Histidine Residue in the Catalytic Mechanism of the Rat Kidney γ-Glutamyl Transpeptidase

  • Kim, Soo-Ja (Department of Chemistry, College of Liberal Arts and Sciences, Kyung-Hee University) ;
  • Ko, Moon-Kyu (Department of Biochemical Engineering, Konyang University) ;
  • Chai, Kyu-Yun (Department of Nanobiochemistry, Wonkwang University) ;
  • Cho, Seong-Wan (Department of Pharmaceutical Engineering, Konyang University) ;
  • Lee, Woo-Yiel (Department of Pharmaceutical Engineering, Konyang University)
  • Published : 2007.02.20

Abstract

γ -Glutamyl transpeptidase (EC 2.3.2.2) plays a key role in glutathione metabolism by catalyzing the transfer of the γ -glutamyl residue and hydrolysis of glutathione. The functional residues at the active site of the rat kidney γ -glutamyl transpeptidase were investigated by kinetic studies at various pH, the treatment of diethylpyrocarbonate (DEPC), and photooxidation in presence of methylene blue. An ionizable group affecting the enzymatic activity with an apparent pKa value of 7.1, which is in the range of pKa values for a histidine residue in protein, was obtained by examining the pH-dependence of kinetic parameters. The pH effect on the photoinduced inactivation rate of the enzyme corresponds to that expected for the photooxidation of the free histidine. The involvement of a histidine in the catalytic site of the enzyme was further supported by DEPC modification accompanied by an increase in absorbance at 240 nm, indicating the formation of Ncarbethoxyhistidine. The histidine located at the position of 382 in the precursor of the enzyme is primarily suspected based on the amino acid sequence alignment of the transpeptidases from various organisms.

Keywords

References

  1. Meister, A.; Tate, S. S.; Griffith, O. W. Methods Enzymol. 1981, 77, 237 https://doi.org/10.1016/S0076-6879(81)77032-0
  2. Sacchetti, L.; Castaldo, G.; Cimino, L.; Budillon, G.; Salvatore, F. Clin. Chim. Acta 1988, 177, 167 https://doi.org/10.1016/0009-8981(88)90138-6
  3. Bulle, F.; Mavier, P.; Zafrani, E. S.; Preaux, A.-M.; Lescs, M.-C.; Siegrist, S.; Dhumeaux, D.; Guellaen, G. Hepatology 1990, 11, 545
  4. Antoine, B.; Visvikis, A.; Thioudellet, C.; Rahimi-Pour, A.; Strazielle, N.; Wellman, M.; Siest, G. Biochem. J. 1989, 262, 535
  5. Arai, K.; Yoshida, K.-I.; Komoda, T.; Kobayashi, N.; Sakagishi, Y. Clin. Chim. Acta 1992, 210, 35
  6. Roth, J. Biochim. Biophys. Acta 1987, 906, 405 https://doi.org/10.1016/0304-4157(87)90018-9
  7. Arai, K.; Sumi, S.-H.; Yoshida, K.; Komoda, T. Biochim. Biophys. Acta 1995, 1253, 33
  8. Meister, A.; Tate, S. S. Annu. Rev. Biochem. 1976, 45, 559 https://doi.org/10.1146/annurev.bi.45.070176.003015
  9. Hughey, R. P.; Coyle, P. J.; Curthoys, N. P. J. Biol. Chem. 1979, 254, 1124
  10. Tsuji, A.; Matsuda, Y.; Katunuma, N. J. Biochem. (Tokyo) 1980, 87, 1567
  11. Sakamuro, D.; Yamazoe, M.; Matsuda, Y.; Kangawa, K.; Taniguchi, N.; Matsuo, H.; Yoshikawa, H.; Ogasawara, N. Gene 1988, 73, 1 https://doi.org/10.1016/0378-1119(88)90307-1
  12. Nash, B.; Tate, S. S. J. Biol. Chem. 1982, 257, 585
  13. Rajagopalan, S.; Park, J.-H.; Patel, P. D.; Lebovitz, R. M.; Lieberman, M. W. J. Biol. Chem. 1990, 265, 1172
  14. Castonguay, R.; Lherbet, C.; Keillor, J. W. Bioorg. Med. Chem. 2002, 10, 4185 https://doi.org/10.1016/S0968-0896(02)00165-7
  15. Hughey, R. P.; Curthoys, N. P. J. Biol. Chem. 1976, 251, 7863
  16. Tate, S. S.; Meister, A. J. Biol. Chem. 1974, 249, 7593
  17. Lowry, O. H.; Rosebrough, N. J.; Farr, A. L.; Randall, R. J. J. Biol. Chem. 1951, 193, 265
  18. Dixon, M.; Webb, E. C. The Enzymes, 2nd ed.; Longmans Green: London, 1964; p 108
  19. Rippa, M.; Pontremoli, S. Biochemistry 1968, 7, 514
  20. Miles, E. W. Methods Enzymol. 1977, 47, 431 https://doi.org/10.1016/0076-6879(77)47043-5
  21. Cleland, W. W. Methods Enzymol. 1982, 87, 390 https://doi.org/10.1016/S0076-6879(82)87024-9
  22. Robert, C. B.; Louis, B. H. Biochemistry 1987, 26, 4237 https://doi.org/10.1021/bi00388a009
  23. Pangburn, M. K.; Walsh, K. A. Biochemistry 1975, 14, 4050 https://doi.org/10.1021/bi00689a019
  24. Weil, L. Arch. Biochem. Biophys. 1965, 110, 57 https://doi.org/10.1016/0003-9861(65)90154-2
  25. Martinez-Carrion, M.; Turano, C.; Riva, F.; Fasella, P. J. Biol. Chem. 1967, 242, 1426
  26. Chatterjee, G. C.; Noltmann, E. A. E. J. Biochem. 1967, 2, 9 https://doi.org/10.1111/j.1432-1033.1967.tb00098.x
  27. Levy, H. M.; Leber, P. D.; Ryan, E. M. J. Biol. Chem. 1963, 238, 3654
  28. Ghazaleth, F. A.; Omburo, G. A.; Colman, R. W. Biochemical J. 1996, 317, 495
  29. Paudel, H. K.; Yu, L.; Yu, C.-A. Biochim. Biophys. Acta 1991, 1056, 159
  30. Tian, W. X.; Hsu, R. Y.; Wang, Y. S. J. Biol. Chem. 1985, 260, 11375
  31. Muhlrad, H.; Hegy, G.; Horany, M. Biochim. Biophys. Acta 1969, 181, 184 https://doi.org/10.1016/0005-2795(69)90240-2
  32. Melchior, W. B.; Fahrney, D. Biochemistry 1970, 9, 251 https://doi.org/10.1021/bi00804a010
  33. Laperche, Y.; Bulle, F.; Aissani, T.; Chobert, M. N.; Aggerbeck, M.; Hanoune, J.; Guellaen, G. Proc. Natl. Acad. Sci. USA 1986, 83, 937 https://doi.org/10.1073/pnas.83.4.937