DOI QR코드

DOI QR Code

Synthesis of 3,3-Difluoro-2-pyrrolidone Derivatives

  • Kim, Sung-Kwan (Department of Bionanochemistry, Wonkwang University) ;
  • Xie, Zhi-Feng (College of Pharmacy, Yanbin University) ;
  • Jun, Chang-Soo (Department of Bionanochemistry, Wonkwang University) ;
  • Kwon, Tae-Ho (College of Life Science and Natural Resources, Wonkwang University) ;
  • Ryu, Soung-Ryual (Department of Chemical Engineering, Dae Bul University) ;
  • Chai, Kyu-Yun (Department of Bionanochemistry, Wonkwang University)
  • Published : 2007.12.20

Abstract

Introduction of a difluoromethylene group into organic compounds has been observed to impart them with positive properties, as viewed by a wide range of industries. Here, synthesis of 3,3-difluoro-2-pyrrolidone derivatives (7) was accomplished by the reaction of ethyl 2,2-difluoro-4-iodo-4-(trimethylsilyl) butanolate (4) with primary amines followed by desilylation. The key intermediate (4) was prepared from the addition reaction of trimethylvinylsilane (3) to ethyl difluoroiodoacetate (2) in the presence of Cu(0). Ethyl difluoroiodoacetate (2) was prepared starting from ethyl bromodifluoroacetate (1) via Reformatsky-type reaction.

Keywords

References

  1. Filler, R.; Kobayashi, Y. Biochemical Aspects of Fluorine Chemistry; Elsevier Biochemical Press and Kodansha Ltd.: 1982
  2. Filler, R. Biochemistry Involving Carbon-Fluorine Bonds; ACS: Washington D. C., 1976
  3. Welch, J. J. Tetrahedron 1987, 43, 3123 https://doi.org/10.1016/S0040-4020(01)90286-8
  4. Gelb, M. H.; Svaren, J. P.; Abeles, R. H. Biochem. 1985, 24, 1814
  5. Burkholder, C. R.; Dolbier, W. R.; Medebielle, M. J. Fluorine Chem. 2000, 102, 369 https://doi.org/10.1016/S0022-1139(99)00314-0
  6. Davis, C. R.; Burton, D. J.; Yang, Z. Y. J. Fluorine Chem. 1995, 70, 135 https://doi.org/10.1016/0022-1139(94)03102-6
  7. Elsheimer, S.; Dolbier, W. R.; Muria, M. J. Org. Chem. 1984, 49, 205 https://doi.org/10.1021/jo00175a054
  8. Rong, G.; Keese, R. Tetrahedron Lett. 1990, 31, 5615 https://doi.org/10.1016/S0040-4039(00)97911-5
  9. Huang, W. Y.; Wang, W.; Hung, B. N. Acta Chimical Sinia (Engl. Ed.) 1986, 178
  10. Hung, W. Y.; Zhang, H. J. J. Fluorine Chem. 1990, 50, 133 https://doi.org/10.1016/S0022-1139(00)82185-5
  11. Lang, R. W.; Schaud, B. Tetrahedron Lett. 1988, 29, 2943 https://doi.org/10.1016/0040-4039(88)85053-6
  12. Watanabe, S.; Fajita, T.; Sakamoto, M.; Takeda, H.; Kitazume, T.; Yamazaki, T. J. Fluorine Chem. 1997, 82, 1 https://doi.org/10.1016/S0022-1139(96)03536-1
  13. Qiu, Z.; Burton, D. J. J. Org. Chem. 1995, 60, 3465 https://doi.org/10.1021/jo00116a038
  14. Yang, Z. Y.; Burton, D. J. J. Org. Chem. 1991, 56, 170
  15. Yang, Z. Y.; Burton, D. J. J. Fluorine Chem. 1989, 45, 435 https://doi.org/10.1016/S0022-1139(00)82877-8
  16. Chen, J.; Hu, C. M. J. Chem. Soc. Perkin Trans. 1 1994, 1111
  17. Qiu, Z. M.; Burton, D. J. Tetrahedron Lett. 1994, 35, 1813 https://doi.org/10.1016/S0040-4039(00)73167-4
  18. Yang, Z. Y.; Burton, D. J. J. Org. Chem. 1992, 57, 5144 https://doi.org/10.1021/jo00045a027
  19. Qiu, Z. M.; Burton, D. J. Tetrahedron Lett. 1993, 34, 3239 https://doi.org/10.1016/S0040-4039(00)73671-9
  20. Bystrenina, V. I.; Shebaldova, A. D.; Lizak, I. V.; Sedavkina, V. A.; Krashennikova, M. K. Khim-Farm Zh. 1982, 16(1), 65
  21. Khananashvili, L. M.; Akbobaze, D. Sh.; Dzhaniashvili, L. K.; Lomtadize, Z. Sh. Khim-Farm. Zh. 1982, 16(5), 560
  22. Fujii, Y.; Iwasa, H.; Hirai, J.; Takahama, Y.; Hasumi, K.; Eriguchi, M. Biomed & Phamacother 2000, 54, 85 https://doi.org/10.1016/S0753-3322(00)88857-5
  23. De Meglio, P. G.; Corra, F.; Ravenna, F.; Gentili, P.; Tempra-Gabbiati, G.; Cristina, T.; Riva, M. Farmaco. Ed. Sci. 1987, 42(5), 359
  24. Brahms, D. L. S.; Dailey, W. Chem. Rev. 1996, 96, 1585 https://doi.org/10.1021/cr941141k
  25. Okano, T.; Takakura, N.; Nakano, Y.; Okajima, A.; Eguchi, S. Tetrahedron Lett. 1995, 51, 1903 https://doi.org/10.1016/0040-4020(94)01099-L
  26. Buck, R. T.; Coe, D. M.; Drysdale, M. J.; Ferris, L.; Haigh, D.; Moody, C. J.; Pearson, N. D.; Sanghera, B. Tetrahedron: Asymmetry 2003, 14, 791 https://doi.org/10.1016/S0957-4166(03)00035-1
  27. Yang, Z. Y.; Burton, D. J. J. Chem. Soc., Chem. Commun. 1992, 233
  28. Yang, Z. Y.; Burton, D. J. J. Org. Chem. 1991, 56, 5125 https://doi.org/10.1021/jo00017a026
  29. Kuroboshi, M.; Ishihara, T. Tetrahedron Lett. 1987, 28, 6481 https://doi.org/10.1016/S0040-4039(00)96894-1
  30. Kuroboshi, M.; Ishihara, T. Bull. Chem. Soc. Jpn. 1990, 63, 428 https://doi.org/10.1246/bcsj.63.428

Cited by

  1. Highly efficient and versatile synthesis of α,α-difluoro-γ-lactams via aminodifluoroalkylation of alkenes vol.4, pp.12, 2017, https://doi.org/10.1039/C7QO00611J
  2. ChemInform Abstract: Synthesis of 3,3-Difluoro-2-pyrrolidone Derivatives. vol.39, pp.18, 2008, https://doi.org/10.1002/chin.200818102
  3. Rational and practical synthesis of α,α-difluoro-γ-lactams vol.133, pp.None, 2012, https://doi.org/10.1016/j.jfluchem.2011.10.013
  4. Inhibitory Effects of N-Amido-3,3-difluoropyrrolidin-2-ones on LPS-induced Nitric Oxide Production in RAW 264.7 Macrophages vol.35, pp.1, 2007, https://doi.org/10.5012/bkcs.2014.35.1.313
  5. Photocatalytic intramolecular radical cyclization involved synergistic SET and HAT: synthesis of 3,3-difluoro-γ-lactams vol.8, pp.4, 2021, https://doi.org/10.1039/d0qo01188f
  6. An Overview on Biological Importance of Pyrrolone and Pyrrolidinone Derivatives as Promising Scaffolds vol.57, pp.10, 2007, https://doi.org/10.1134/s1070428021100201