DOI QR코드

DOI QR Code

Meso-tetrakis(N-methylpyridinium-4-yl)porphyrin at the Minor Groove of Contiguous Adenine-Thymine Base Pairs

  • Chae, Youn-Hee (Department of Chemistry, College of Sciences, Yeungnam University) ;
  • Jin, Biao (Department of Chemistry, College of Sciences, Yeungnam University) ;
  • Kim, Jong-Ki (Department of Biomedical Engineering, School of Medicine, Catholic University of Daegu) ;
  • Han, Sung-Wook (School of Herb Medicine Resource, Kyungwoon University) ;
  • Kim, Seog-K. (Department of Chemistry, College of Sciences, Yeungnam University) ;
  • Lee, Hyun-Mee (Department of Chemistry, College of Sciences, Yeungnam University)
  • Published : 2007.12.20

Abstract

Three possible binding modes of cationic meso-tetrakis(N-methylpyridinium-4-yl)porphyrin (TMPyP) to d[(GCATATATGC)2] duplex were investigated by the molecular dynamics (MD) simulation. Among the three binding modes namely, “along the groove”, “across the groove” and “face on the groove”, the “across the groove” model exhibited the largest negative binding free energy and the DNA backbone remained as the B form. In this model, the molecular plain of the TMPyP tilts 45o with respect to the DNA helix axis and is largely exposed to the solvent. TMPyP was stabilized mainly by the interaction between the positively charged neighboring pyridinium moieties of TMPyP and negatively charged phosphate groups of DNA. The result obtained in this work by MD and the report (Jin, B. et al., J. Am. Chem. Soc. 2005, 127, 2417.) that the spectral properties of poly[d(A-T)2] bound TMPyP in the presence and absence of the minor groove binding drug 4',6- diamidino-2-phenylindole are similar, we propose that TMPyP bind across the minor groove of the AT rich- DNA.

Keywords

References

  1. Marzilli, L. G.; Banville, L. D.; Zon, G.; Wilson, W. D. J. Am. Chem. Soc. 1986, 108, 4188-4192 https://doi.org/10.1021/ja00274a056
  2. Strickland, J. A.; Marzilli, L. G.; Wilson, W. D. Biopolymers 1990, 29, 1307-1323 https://doi.org/10.1002/bip.360290819
  3. Guliaev, A. B.; Leontis, N. B. Biochemistry 1999, 28, 15425-15437
  4. Lee, Y.-A.; Lee, S.; Cho, T.-S.; Kim, C.; Han, S. W.; Kim, S. K. J. Phys. Chem. B 2002, 106, 11351-11355 https://doi.org/10.1021/jp025924i
  5. Sehlstedt, U.; Kim, S. K.; Carter, P.; Goodisman, J.; Vollano, J. K.; Norden, B.; Dabrowiak, J. C. Biochemistry 1994, 33, 417-426 https://doi.org/10.1021/bi00168a005
  6. Schneider, H. J.; Wang, M. J. Org. Chem. 1994, 59, 7473-7478 https://doi.org/10.1021/jo00103a047
  7. Yun, B. H.; Jeon, S. H.; Cho, T.-S.; Yi, Y.; Sehlstedt, U.; Kim, S. K. Biophys. Chem. 1998, 70, 1-10 https://doi.org/10.1016/S0301-4622(97)00031-8
  8. Lee, S.; Heon, S. H.; Kim, B. J.; Han, S. W.; Jang, H. G.; Kim, S. K. Biophys. Chem. 2001, 92, 35-45 https://doi.org/10.1016/S0301-4622(01)00181-8
  9. Lee, S.; Lee, Y.-A.; Lee, H. M.; Lee, J. Y.; Kim, D. H.; Kim, S. K. Biophys. J. 2002, 83, 371-381 https://doi.org/10.1016/S0006-3495(02)75176-X
  10. Jin, B.; Lee, H. M.; Lee, Y.-A.; Ko, J. H.; Kim, C.; Kim, S. K. J. Am. Chem. Soc. 2005, 127, 2417-2424 https://doi.org/10.1021/ja044555w
  11. Lee, Y.-A.; Kim, J.-O.; Cho, T.-S.; Song, R.; Kim, S. K. J. Am. Chem. Soc. 2003, 125, 8106-8107 https://doi.org/10.1021/ja034499j
  12. Kim, J.-O.; Lee, Y.-A.; Yun, B. H.; Han, S. W.; Kwag, S. T.; Kim, S. K. Biophys. J. 2004, 86, 1012-1017 https://doi.org/10.1016/S0006-3495(04)74176-4
  13. Arnaud, P.; Zakrzewska, K.; Meunier, B. J. Comput. Chem. 2003, 24, 797-805 https://doi.org/10.1002/jcc.10212
  14. Ford, K. G.; Pearl, L. H.; Neidle, S. Nucleic Acids Res. 1987, 15, 6553-6562 https://doi.org/10.1093/nar/15.16.6553
  15. Phan, A. T.; Kuryavyi, V.; Gaw, H. Y.; Patel, D. J. Nat. Chem. Biol. 2005, 1, 167-173 https://doi.org/10.1038/nchembio723
  16. Hui, X.; Gresh, N.; Pullman, B. Nucleic Acids Res. 1990, 18, 1109-1114 https://doi.org/10.1093/nar/18.5.1109
  17. Frich, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakzewski, V. G.; Montgomery, Jr. J. A.; Stratman, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Morokuma, Q.; Cui, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Stefanov, J. V.; Ortiz, B. B.; Liashenko, G.; Liu, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen. M. W.; Wong, J. L.; Andres, W.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A. Gaussian 98, Revision A. 3.; Gaussian, Inc.: Pittsburgh, PA, 1998
  18. Bayly, C. I.; Cieplak, P.; Cornell, W. D.; Kollman, P. A. J. Phys. Chem. 1993, 97, 10269-10280 https://doi.org/10.1021/j100142a004
  19. Cieplak, P. I.; Cornell, W. D.; Bayly, C.; Kollman, P. A. J. Comput. Chem. 1995, 16, 1357-1377 https://doi.org/10.1002/jcc.540161106
  20. Case, D. A.; Pearlman, D. A.; Caldwell, J. W.; Cheatham, T. E. III.; Wang, J.; Ross, W. S.; Simmering, C. L.; Darden, T. A.; Merz, K. M.; Stanton, R. V.; Cheng, A. L.; Vincent, J. J.; Crowley, M.; Tsui, V.; Gohlke, H.; Radmer, R. J.; Duan, Y.; Pitera, J.; Massova, I.; Seibel, G. L.; Singh, U. C.; Weiner, P. K.; Kollman, P. A. AMBER7; University of California: San Francisco, 2002
  21. Essmann, U.; Perera, L.; Berkowitz, M. L.; Darden, T.; Lee, H.; Pedersen, L. G. J. Chem. Phys. 1995, 103, 8577-8593 https://doi.org/10.1063/1.470117
  22. Darden, T.; York, D.; Pedersen, L. G. J. Chem. Phys. 1993, 98, 10089-10092 https://doi.org/10.1063/1.464397
  23. Ryckaert, J. P.; Ciccotti, G.; Berendsen, H. J. C. J. Comput. Phys. 1977, 23, 327-341 https://doi.org/10.1016/0021-9991(77)90098-5
  24. Laver, R.; Sklenar, H. CURVES 5.3; Laboratorie de Biochimie Theorique CNRS, Institu de Biologie Physico-Chimique: Paris, France, 1990
  25. Humphrey, W.; Dalke, A.; Shulten, K. J. Mol. Graphics 1996, 14, 33-38 https://doi.org/10.1016/0263-7855(96)00018-5
  26. Srinivasan, J.; Cheatham, T. E.; Cieplak, P.; Kollman, P. A.; Case, D. A. J. Am. Chem. Soc. 1998, 120, 9401-9409 https://doi.org/10.1021/ja981844+
  27. Kollman, P. A.; Massova, I.; Reyes, C.; Kuhn, B.; Huo, S.; Chong, L.; Lee, M.; Lee, T.; Duan, Y.; Wang, W.; Donini, O.; Cieplak, P.; Srinivasan, J.; Case, D. A.; Cheatham, T. E. Acc. Chem. Res. 2000, 33, 889-897 https://doi.org/10.1021/ar000033j
  28. Levitt, M. Proc. Nat. Acad. Sci. USA. 1978, 75, 640-644 https://doi.org/10.1073/pnas.75.2.640
  29. Ohyama, T.; Mara, H.; Yamamoto, Y. Biophys. Chem. 2005, 113, 53-59 https://doi.org/10.1016/j.bpc.2004.07.039
  30. Arnaud, P.; Zakrzewska, K.; Meunier, B. J. Comput. Chem. 2003, 24, 797-805 https://doi.org/10.1002/jcc.10212
  31. Larsen, T. A.; Goodsell, D. S.; Cascio, D.; Grzeskowiak, K.; Dikerson, R. E. J. Biomol. Struct. Dyn. 1989, 7, 477-491 https://doi.org/10.1080/07391102.1989.10508505
  32. Mohan, S.; yathindra, N. J. Biomol. Struct. Dyn. 1991, 9, 695-704
  33. Eriksson, S.; Kim, S. K.; Kubista, M.; Norden, B. Biochemistry 1993, 32, 2987-2998 https://doi.org/10.1021/bi00063a009
  34. Kim, H.-K.; Kim, J. M.; Kim, S. K.; Rodger, A.; Norden, B. Biochemistry 1996, 35, 1187-1194 https://doi.org/10.1021/bi951913m
  35. Vlieghe, D.; Sponer, J.; Van meervelt, L. Biochemistry 1999, 38, 16443-16451 https://doi.org/10.1021/bi9907882

Cited by

  1. N-fused porphyrin with pyridinium side-arms: a new class of aromatic ligand with DNA-binding ability vol.9, pp.23, 2011, https://doi.org/10.1039/c1ob05981e
  2. -methylpyridinium-4-yl)porphyrin to DNA Probed by Circular and Linear Dichroism Spectroscopies vol.116, pp.41, 2012, https://doi.org/10.1021/jp3081063
  3. Acid–base properties and DNA-binding of water soluble N-confused porphyrins with cationic side-arms vol.6, pp.22, 2008, https://doi.org/10.1039/b810171j
  4. Physical Chemistry Research Articles Published in the Bulletin of the Korean Chemical Society: 2003-2007 vol.29, pp.2, 2008, https://doi.org/10.5012/bkcs.2008.29.2.450