DOI QR코드

DOI QR Code

Investigation of a New Red-Emitting, Eu3+-Activated MgAl2O4 Phosphor

  • Singh, Vijay (Department of Chemistry, College of Natural Sciences, Kyungpook National University) ;
  • Haque, Masuqul (Department of Chemistry, College of Natural Sciences, Kyungpook National University) ;
  • Kim, Dong-Kuk (Department of Chemistry, College of Natural Sciences, Kyungpook National University)
  • 발행 : 2007.12.20

초록

MgAl2O4:Eu3+ red-light emitting powder phosphor was prepared at temperature as low as 500 oC within a few minutes by using the combustion route. The prepared powder was characterized by X-ray diffraction, scanning electron microscopy and Fourier-transform infrared spectrometry. The luminescence of Eu3+-activated MgAl2O4 shows a strong red emission dominant peak around 611 nm, which can be attributed to the 5D0-7F2 transition of Eu3+ ions from the synthesized phosphor particles under excitation (394 nm). Electron paramagnetic resonance (EPR) measurements at the X-band showed that no signal could be attributed to Eu2+ ions in MgAl2O4.

키워드

참고문헌

  1. Donegan, J. F.; Bergin, F. J.; Glynn, T. J.; Imbush, G. F.; Remeika, J. P. J. Lumin. 1986, 35, 57 https://doi.org/10.1016/0022-2313(86)90008-6
  2. Garapon, C.; Manaa, H.; Moncoge, R. J. Chem. Phys. 1991, 95, 5501 https://doi.org/10.1063/1.461623
  3. Ibarra, A.; Vila, R.; Garner, F. A. J. Nucl. Mater. 1996, 233, 1336 https://doi.org/10.1016/S0022-3115(96)00158-4
  4. Tomita, A.; Sato, T.; Tanaka, K.; Kawabe, Y.; Shirai, M.; Hanamura, E. J. Lumin. 2004, 109, 19 https://doi.org/10.1016/j.jlumin.2003.12.049
  5. Kuleshov, N. V.; Shcherbitsky, V. G.; Mikhailov, V. P.; Kuck, S.; Koetke, J.; Petermann, K.; Huber, G. J. Lumin. 1997, 71, 265 https://doi.org/10.1016/S0022-2313(96)00284-0
  6. Rossi, F.; Pucker, G.; Montagna, M.; Ferrari, M.; Boukenter, A. Opt. Mater. 2000, 13, 373 https://doi.org/10.1016/S0925-3467(99)00091-9
  7. Carvalhaes, R. P. M.; Rocha, M. S.; de Souza, S. S.; Blak, A. R. Nucl. Instrum. Methods Phys. Res., Sect. B 2004, 218, 158 https://doi.org/10.1016/j.nimb.2003.12.031
  8. Singh, V.; Chakradhar, R. P. S.; Rao, J. L.; Kim, D.-K. J. Solid State Chem. 2007, 180, 2607
  9. Ishizaka, T.; Kurokawa, Y. J. Appl. Phys. 2001, 90, 243 https://doi.org/10.1063/1.1378809
  10. Guo, P. M.; Zhao, F.; Li, G. B.; Liao, F. H.; Tian, S. J.; Jing, X. P. J. Lumin. 2003, 105, 61 https://doi.org/10.1016/S0022-2313(03)00098-X
  11. Liang, H.; Zhang, Q.; Zheng, Z. Q.; Ming, H.; Li, Z. C.; Xu, J.; Chen, B.; Zhao, H. Opt. Lett. 2004, 29, 477 https://doi.org/10.1364/OL.29.000477
  12. Xiao, X. Z.; Yan, B. J. Alloys Compd. 2007, 433, 246 https://doi.org/10.1016/j.jallcom.2006.06.058
  13. Mingying, P.; Ning, D.; Yanbo, Q.; Baotao, W.; Chen, W.; Danping, C.; Jianrong, Q. J. Rare Earths 2006, 24, 749 https://doi.org/10.1016/S1002-0721(07)60022-2
  14. Singh, V.; Rao, T. K. G.; Zhu, J.-J. J. Lumin. 2007, 126, 1 https://doi.org/10.1016/j.jlumin.2006.04.003
  15. Chang, H.; Lenggoro, I. W.; Ogi, T.; Okuyama, K. Mater. Lett. 2005, 59, 1183 https://doi.org/10.1016/j.matlet.2004.12.024
  16. Yang, C.-C.; Chen, S.-Y.; Cheng, S.-Y. Powder Technol. 2004, 148, 3 https://doi.org/10.1016/j.powtec.2004.09.011
  17. Jia, D.; Wu, B.; Zhu, J. J. Lumin. 2000, 90, 33 https://doi.org/10.1016/S0022-2313(99)00602-X
  18. Park, B.-K.; Lee, S.-S.; Kang, J.-K.; Byeon, S.-H. Bull. Kor. Chem. Soc. 2007, 28, 1467 https://doi.org/10.5012/bkcs.2007.28.9.1467
  19. Bratton, R. J. J. Am. Ceram. Soc. 1971, 52(8), 141
  20. Jain, S. R.; Adiga, K. C.; Vernekar, V. R. P. Combust. Flame 1981, 40, 71 https://doi.org/10.1016/0010-2180(81)90111-5
  21. Serra, O. A.; Thompson, L. C. Inorg. Chem. 1976, 15, 504 https://doi.org/10.1021/ic50157a002
  22. Ribeiro, S. J. L.; Dahmouche, K.; Ribeiro, C. A.; Santilli, C. V.; Pulcinelli, S. H. J. Sol-Gel Sci. Tech. 1998, 13, 427
  23. Jorgensen, C. K.; Reisfeld, R. J. Less-Common Met. 1983, 93, 107
  24. Porcher, P. Rare Earths; Saez, R.; Caro, P. A., Eds.; Madrid, 1998; p 43
  25. Dowsing, R. D.; Gibson, J. F. J. Chem. Phys. 1969, 50, 294 https://doi.org/10.1063/1.1670791

피인용 문헌

  1. Synthesis, characterization, optical absorption, luminescence and defect centres in Er3+ and Yb3+ co-doped MgAl2O4 phosphors vol.108, pp.2, 2012, https://doi.org/10.1007/s00340-012-4970-4
  2. Laser Co-Vaporization vol.99, pp.8, 2016, https://doi.org/10.1111/jace.14383
  3. Phosphor. vol.39, pp.12, 2008, https://doi.org/10.1002/chin.200812009
  4. ) powders prepared by hydrothermal method vol.187, pp.1742-6596, 2009, https://doi.org/10.1088/1742-6596/187/1/012053
  5. Characterization and Luminescence Properties of Blue Emitting Phosphor (Mg,Sr)Al[sub 2]O[sub 4]:Eu[sup 2+] for White LEDs vol.157, pp.3, 2010, https://doi.org/10.1149/1.3288491
  6. Spherical porous ZnAl2O4:Eu3+ phosphors: PEG-assisted hydrothermal growth and photoluminescence vol.32, pp.3, 2007, https://doi.org/10.1016/j.optmat.2009.10.001
  7. MgAl2O4:Eu3+ nanoplates and nanoparticles as red-emitting phosphors: Shape-controlled synthesis and photoluminescent properties vol.12, pp.5, 2010, https://doi.org/10.1016/j.solidstatesciences.2010.02.004
  8. Luminescence and electron paramagnetic resonance investigation on ultraviolet emitting Gd doped MgAl2O4 phosphors vol.143, pp.None, 2007, https://doi.org/10.1016/j.jlumin.2013.03.054
  9. Associated Aspects on Structure, Morphology and Photoluminescence of MgAl2O4:x% Gd3+ Nanophosphor Prepared via Citrate Sol-Gel Method vol.48, pp.6, 2007, https://doi.org/10.1007/s11664-019-07157-y
  10. Deep Red Emitting MgAl2O4:Cr3+ Phosphor for Solid State Lighting vol.48, pp.9, 2007, https://doi.org/10.1007/s11664-019-07358-5