DOI QR코드

DOI QR Code

Synthesis and Crystal Structure of Zinc Iodide in the Sodalite Cavities of Zeolite A (LTA)

  • Kim, Seok-Han (Department of Applied Chemistry, Kyungpook National University) ;
  • Park, Man (Department of Agricultural Chemistry, Kyungpook National University) ;
  • Son, Young-Ja (Department of Applied Chemistry, Andong National University) ;
  • Lee, Hyung-Joo (Department of Electronics Engineering, Andong National University) ;
  • Jeong, Gyo-Cheol (Department of Earth and Environmental Sciences, Andong National University) ;
  • Bae, Myung-Nam (Department of Chemistry, Pusan National University) ;
  • Lim, Woo-Taik (Department of Applied Chemistry, Andong National University)
  • Published : 2007.04.20

Abstract

The crystal structure of ZnI2 molecule synthesized in zeolite A (LTA) has been studied by single-crystal X-ray diffraction techniques. A single crystal of |Zn6|[Si12Al12O48]-LTA, synthesized by the dynamic ion-exchange of |Na12|[Si12Al12O48]-LTA with aqueous 0.05 M Zn(NO3)2 and washed with deionized water, was placed in a stream of flowing 0.05 M KI in CH3OH at 294 K for four days. The resulting crystal structure of the product (|K6Zn3(KI)3(ZnI2)0.5|[Si12Al12O48]-LTA, a = 12.1690(10) A) was determined at 294 K by single-crystal X-ray diffraction in the space group Pm3m. It was refined with all measured reflections to the final error index R1 = 0.078 for 431 reflections which Fo > 4σ (Fo). At four crystallographically distinct positions, 3.5 Zn2+ and nine K+ ions per unit cell are found: three Zn2+ and five K+ ions lie on the 3-fold axes opposite 6-rings in the large cavity, two K+ ions are off the plane of the 8-rings, two K+ ions are recessed deeply off the plane of the 8-rings, and the remaining a half Zn2+ ion lie on the 3-fold axes opposite 6-rings in the sodalite cavity. A half Zn2+ ion and an I- ion per unit cell are found in the sodalite units, indicating the formation of a ZnI2 molecule in 50% of the sodalite cavities. Each ZnI2 (Zn-I = 3.35(5) A) is held in place by the coordination of its one Zn2+ ion to the zeolite framework oxygens and by the coordination of its two I- ions to K+ ions through 6-rings (I-K = 3.33(8) A). Three additional I- ions per unit cell are found opposite a 4-ring in the large cavity and form a K3I2+ and two K2ZnI3+ ionic clusters, respectively.

Keywords

References

  1. Naccache, C.; Taarit, Y. B. Zeolite: Science and Technology; Martinus Nijhoff Publishers: The Hague, The Netherlands, 1984; pp 373-396
  2. Kim, H. S.; Kim, J. J.; Kwon, H. N.; Chung, M. J.; Lee, B. G.; Jang, H. G. J. Catal. 2002, 205, 226 https://doi.org/10.1006/jcat.2001.3444
  3. Rhodes, C. N.; Brown, D. R. J. Chem. Soc. Faraday Trans. 1993, 89, 1387 https://doi.org/10.1039/ft9938901387
  4. Fraile, J. M.; Garcia, J. I.; Massam, J.; Mayoral, J. A.; Pires, E. J. Molecular Catal. A: Chemical 1997, 123, 43 https://doi.org/10.1016/S1381-1169(97)00044-7
  5. Garcia, J. I.; Mayoral, J. A.; Pires, E.; Brown, D. R.; Massam, Catal. Lett. 1996, 37, 261 https://doi.org/10.1007/BF00807764
  6. Kodomari, M.; Nagaoka, T.; Furusawa, Y. Tetrahedron Lett. 2001, 42, 3105 https://doi.org/10.1016/S0040-4039(01)00378-1
  7. Guisnet, M.; Perot, G. Zeolite: Science and Technology; Martinus Nijhoff Publishers: The Hague, The Netherlands, 1984; pp 397- 420
  8. Derouane, E. G. Zeolite: Science and Technology; Martinus Nijhoff Publishers: The Hague, The Netherlands, 1984; pp 347- 371
  9. Yasuda, M.; Tsuji, S.; Shigeyoshi, Y.; Bada, A. J. Am. Chem. Soc. 2002, 124, 7440 https://doi.org/10.1021/ja0258172
  10. Tyagi, P.; Vedeshwar, A. G. Physical Review B 2001, 64, 245406 https://doi.org/10.1103/PhysRevB.64.245406
  11. Tyagi, P.; Vedeshwar, A. G. Phys. Stat. Sol. (a) 2002, 191, 633 https://doi.org/10.1002/1521-396X(200206)191:2<633::AID-PSSA633>3.0.CO;2-L
  12. Heo, N. H.; Kim, H. S.; Lim, W. T.; Seff, K. J. Phys. Chem. B 2004, 108, 3168 https://doi.org/10.1021/jp031137p
  13. Lim, W. T.; Choi, S. Y.; Kim, B. J.; Kim, C. M.; Lee, I. S.; Kim, S. H.; Heo, N. H. Bull. Korean Chem. Soc. 2005, 26, 1090 https://doi.org/10.5012/bkcs.2005.26.7.1090
  14. Kim, S. H.; Lim, W. T.; Kim, G. H.; Lee, H. S.; Heo, N. H. Bull. Korean Chem. Soc. 2006, 27, 679 https://doi.org/10.5012/bkcs.2006.27.5.679
  15. Charnell, J. F. J. Crystal Growth 1971, 8, 291 https://doi.org/10.1016/0022-0248(71)90074-1
  16. McCusker, L. B.; Seff, K. J. Phys. Chem. 1981, 85, 405 https://doi.org/10.1021/j150604a019
  17. Sheldrick, G. M., SHELXL97, Program for the Refinement of Crystal Structures; University of Gottingen: Germany, 1997
  18. Cruz, W. V.; Leung, P. C. W.; Seff, K. J. Am. Chem. Soc. 1978, 100, 6997 https://doi.org/10.1021/ja00490a036
  19. Mellum, M. D.; Seff, K. J. Phys. Chem. 1984, 88, 3560 https://doi.org/10.1021/j150660a036
  20. Raghavan, N. V.; Seff, K. J. Phys. Chem. 1976, 80, 2133 https://doi.org/10.1021/j100560a016
  21. Leung, P. C. W.; Kunz, K. B.; Seff, K. J. Phys. Chem. 1975, 79, 2157 https://doi.org/10.1021/j100587a020
  22. Doyle, P. A.; Turner, P. S. Acta Crystallogr., Sect. A 1968, 24, 390 https://doi.org/10.1107/S0567739468000756
  23. International Tables for X-ray Crystallography; Ibers, J. A., Hamilton, W. C., Eds.; Kynoch Press: Birmingham, England, 1974; Vol. IV, pp 71-98
  24. Cromer, D. T. Acta Crystallogr. 1965, 18, 17 https://doi.org/10.1107/S0365110X6500004X
  25. International Tables for X-ray Crystallography; Ibers, J. A., Hamilton, W. C., Eds.; Kynoch Press: Birmingham, England, 1974; Vol. IV, pp 148-150
  26. Handbook of Chemistry and Physics, 64th ed.; Chemical Rubber Co.: Cleveland, OH, 1983; p F-170

Cited by

  1. Estabilidade térmica da zeólita A sintetizada a partir de um rejeito de caulim da Amazônia vol.54, pp.331, 2008, https://doi.org/10.1590/S0366-69132008000300012
  2. Synthesis and Crystal Structure of Zinc Iodide in the Sodalite Cavities of Zeolite A (LTA). vol.38, pp.27, 2007, https://doi.org/10.1002/chin.200727184
  3. Using Crystallography and NMR to Count the Number of Three-Aluminum Six-Rings in Fully Zn2+-Exchanged Zeolite Y. These Six-Rings Concentrate at Single Six-Ring Positions vol.125, pp.1, 2021, https://doi.org/10.1021/acs.jpcc.0c09682