DOI QR코드

DOI QR Code

Determination of Methylmercury in Biological Samples Using Dithizone Extraction Method Followed by Purge & Trap GC-MS

  • Lee, Jung-Sub (Inorganics Analysis Research Division, National Institute of Environmental Research, Environmental Research Complex) ;
  • Ryu, Yoon-Jung (Inorganics Analysis Research Division, National Institute of Environmental Research, Environmental Research Complex) ;
  • Park, Jae-Sung (Inorganics Analysis Research Division, National Institute of Environmental Research, Environmental Research Complex) ;
  • Jeon, Sung-Hwan (Inorganics Analysis Research Division, National Institute of Environmental Research, Environmental Research Complex) ;
  • Kim, Sam-Cwan (Inorganics Analysis Research Division, National Institute of Environmental Research, Environmental Research Complex) ;
  • Kim, Young-Hee (Inorganics Analysis Research Division, National Institute of Environmental Research, Environmental Research Complex)
  • Published : 2007.12.20

Abstract

In this study, a dithizone extraction technique involving purge & trap GC-MS was developed for the determination of methylmercury in biological samples, especially blood and fish. After alkaline digestion, methylmercury in biological samples was extracted into dithizone and back-extracted into aqueous sulfide solution. The extracted methylmercury was converted to the volatile ethyl derivative, purged and trapped onto a solid-phase collection medium, and then introduced into the GC-MS system. The determined MDLs of the established method were 0.9 ng·g?1 for biological samples and its accuracy and precision were found to be 93% and 3.8%, respectively. The method was validated by analysis of CRMs such as SRM 966, BCR 463 and IAEA 407 and all analytical results were within certified ranges with average RSDs of less than 6%. The analytical results of field-sampled fish also showed that the method can be successfully used as an alternative for commonly used distillation method followed by GC-CVAFS detection.

Keywords

References

  1. Horvat, M. Global and Regional Mercury Cycles: Sources, Fluxes and Mass Balances; Beayens, W., Ed.; Kluwer Academic: The Netherlands, 1996; p 1
  2. Hammerschmidt, C. R.; Fitzgerald, W. F. Anal. Chem. 2001, 73, 5390
  3. Wolfe, M. F.; Schwarzbach, S.; Sulaiman, R. A. Environ. Toxicol. Chem. 1998, 17, 146 https://doi.org/10.1897/1551-5028(1998)017<0146:EOMOWA>2.3.CO;2
  4. Wiener, J. G.; Krabbenhoft, D. P.; Heinz, G. H.; Cheuhammer, A. M. Handbook of Ecotoxicology, 2nd ed.; Hoffman, D. J., Ed.; CRC Press: Boca Raton, Florida, U. S. A., 2002; p 409
  5. Rice, D. C. Environ. Res. 2004, 95, 406 https://doi.org/10.1016/j.envres.2003.08.013
  6. Plante, M.; Babo, S.; Mutter, J.; Naumann, J.; Buettner, C.; Guallar, E. N. Engl. J. Med. 2003, 348, 2151 https://doi.org/10.1056/NEJM200305223482118
  7. Kinjo, Y.; Higashi, H.; Nakano, A.; Sakamoto, M.; Sakai, R. Environ. Res. 1993, 63, 241 https://doi.org/10.1006/enrs.1993.1144
  8. Leermarkers, M.; Baeyens, W.; Quevauviller, P. Trends in Analytical Chemistry 2005, 24(5), 383 https://doi.org/10.1016/j.trac.2004.01.001
  9. Ullrich, S. M.; Tanton, T. W.; Absrashitova, S. A. Crit. Rev. Environ. Sci. Technol. 2001, 31(3), 241 https://doi.org/10.1080/20016491089226
  10. Das, K. A.; de la Guardua, M.; Cervera, M. L. Talanta 2001, 55, 1 https://doi.org/10.1016/S0039-9140(01)00400-3
  11. Blanco, R. M.; Villanueva, M. T.; Sanchez Uria, J. E.; Sanz- Medel, A. Anal. Chim. Acta 2000, 419, 137
  12. Akagi, H.; Nishimura, H. Advances in Mercury Toxicology; Suzuki, T., Ed.; Plenum Press: New York, U. S. A., 1991; p 53
  13. Baxter, D. C.; Rodushkin, I.; Engstrom, E.; Klockare, D.; Waara, H. Clinical Chemistry 2007, 53(1), 111 https://doi.org/10.1373/clinchem.2007.072520
  14. Liang, L.; Evens, C.; Lazoff, S.; Woods, J. S.; Cernichiari, E.; Horvat, M.; Martin, M. D.; DeRouen, T. J. Anal. Toxicology 2000, 24, 328 https://doi.org/10.1093/jat/24.5.328
  15. Caricchia, A. M.; Minervini, G.; Soldati, P.; Chiavarini, S.; Ubaldi, C.; Morabito, R. Microchemical Journal 1997, 55, 44 https://doi.org/10.1006/mchj.1996.1357
  16. Rapsomanikis, S.; Craig, P. J. Anal. Chim. Acta 1991, 248, 563 https://doi.org/10.1016/S0003-2670(00)84675-9
  17. Wagemann, R. E.; Trebacz, R.; Hunt, R. Environ. Toxicol. Chem. 1997, 16(9), 1859 https://doi.org/10.1897/1551-5028(1997)016<1859:PMAOMI>2.3.CO;2
  18. Bloom, N. S. Can. J. Fish Aqua. Sci. 1992, 49, 1010 https://doi.org/10.1139/f92-113
  19. Sveinsdottir, A. Y.; Mason, R. P. Arch. Environ. Contam. Toxicol. 2005, 49, 528 https://doi.org/10.1007/s00244-004-0221-y
  20. Lioa, H.; Peirce, C. L.; Larscheid, J. G. Ecol. Fresh Fish 2002, 11, 178 https://doi.org/10.1034/j.1600-0633.2002.00015.x
  21. Sveinsdottir, A. Y. Masters Thesis; University of Maryland: Maryland, 2002

Cited by

  1. Measurement of Mercury Species in Whole Blood Using Speciated Isotope Dilution Methodology Integrated with Microwave-Enhanced Solubilization and Spike Equilibration, Headspace–Solid-Phase Microextraction, and GC-ICP-MS Analysis vol.86, pp.12, 2014, https://doi.org/10.1021/ac501352d
  2. Current literature in mass spectrometry vol.43, pp.7, 2008, https://doi.org/10.1002/jms.1304