References
- Bukowski, R.; Sazalewicz, K.; Chabalowski, C. F. J. Chem. Phys. A 1999, 103, 7322 https://doi.org/10.1021/jp991212p
- Salaniwal, S.; Cui, S.; Cochran, H. D.; Cummings, P. T. Ind. Eng. Chem. Res. 2000, 39, 4543 https://doi.org/10.1021/ie000144m
- Rice, J. K.; Niemeyer, E. D.; Dunbar, R. A.; Bright, F. V. J. Am. Chem. Soc. 1995, 117, 5830
- Ngo, T. T.; Bush, D.; Eckert, C. A.; Liotta, C. L. AIChE J. 2001, 47, 2566 https://doi.org/10.1002/aic.690471119
- Samsonov, M. D.; Wai, C. M.; Lee, S.-C.; Kulyako, Y.; Smart, N. G. Chem. Commun. 2001, 2001, 1868
- Wai, C. M.; Waller, B. Ind. Eng. Chem. Res. 2000, 39, 4837 https://doi.org/10.1021/ie0002879
- Lin, Y.; Smart, N. G.; Wai, C. M. Environ. Sci. Technol. 1995, 29, 2706 https://doi.org/10.1021/es00010a036
- Schmitt, W. J.; Reid, R. C. Chem. Eng. Commun. 1988, 64, 155 https://doi.org/10.1080/00986448808940234
- Kilic, S.; Michalik, S.; Wang, Y.; Johnson, J. K.; Enick, R. M.; Beckman, E. J. Ind. Eng. Chem. Res. 2003, 42, 6415 https://doi.org/10.1021/ie030288b
- Raveendran, P.; Wallen, S. L. J. Am. Chem. Soc. 2002, 124, 12590 https://doi.org/10.1021/ja0174635
- Desiraju, G. R. Acc. Chem. Res. 1996, 29, 441 https://doi.org/10.1021/ar950135n
- Desiraju, G. R.; Steiner, T. The Weak Hydrogen Bond in Structural Chemistry and Biology; Oxford University Press: Oxford, 1999
- Green, R. D. Hydrogen Bonding by C-H Groups; Macmillan: London, 1974
- Jeffrey, G. A. An Introduction to Hydrogen Bonding; Oxford University Press: Oxford, 1997
- Steiner, T. Crystallogr. Rev. 1996, 6, 1 https://doi.org/10.1080/08893119608035394
- Desiraju, G. R. Angew. Chem., Int. Ed. 1995, 34, 2311 https://doi.org/10.1002/anie.199523111
- Shimon, L. J. W.; Vaida, M.; Addadi, L.; Lahav, M.; Leiserowitz, L. J. Am. Chem. Soc. 1990, 112, 6215 https://doi.org/10.1021/ja00173a008
- Berger, I.; Egli, M.; Rich, A. Proc. Natl. Acad. Sci. U.S.A. 1996, 93, 12116 https://doi.org/10.1073/pnas.93.22.12116
- Musah, R. A.; Jensen, G. M.; Rosenfeld, R. J.; McRee, D. E.; Goodin, D. B. J. Am. Chem. Soc. 1997, 119, 9083 https://doi.org/10.1021/ja9716766
- Vargas, R.; Garza, J.; Dixon, D. A.; Hay, B. P. J. Am. Chem. Soc. 2000, 122, 4750 https://doi.org/10.1021/ja993600a
- Blatchford, M. A.; Raveendran, P.; Wallen, S. L. J. Am. Chem. Soc. 2002, 124, 14818 https://doi.org/10.1021/ja027337g
- Raveendran, P.; Ikushima, Y.; Wallen, S. L. Acc. Chem. Res. 2005, 38, 478 https://doi.org/10.1021/ar040082m
- Blatchford, M. A.; Raveendran, P.; Wallen, S. L. J. Phys. Chem. A 2003, 107, 10311 https://doi.org/10.1021/jp027208m
- Kim, K. H.; Kim, Y. J. Phys. Chem. A 2007, submitted
- Diep, P.; Jordan, K. D.; Johnson, J. K.; Beckman, E. J. J. Phys. Chem. A 1998, 102, 2231 https://doi.org/10.1021/jp9730306
- Johansson, A.; Kollman, P.; Rothenberg, S. Theor. Chim. Acta 1973, 29, 167 https://doi.org/10.1007/BF00529439
- Morokuma, K.; Kitaura, K. In Chemical Applications of Atomic and Molecular Electrostatic Potentials; Politzer, P., Truhlar, D. G., Eds.; Plenum: New York, 1981; p 215
- Petterson, L.; Wahlgren, U. Chem. Phys. 1982, 69, 185 https://doi.org/10.1016/0301-0104(82)88145-7
- Fast, P. L.; Corchado, J. C.; Sanchez, M. L.; Truhlar, D. G. J. Phys. Chem. 1999, 103, 5129 https://doi.org/10.1021/jp9903460
- Fast, P. L.; Sanchez, M. L.; Corchado, J. C.; Truhlar, D. G. J. Chem. Phys. 1999, 110, 11679 https://doi.org/10.1063/1.479112
- Fast, P. L.; Sanchez, M. L.; Truhlar, D. G. Chem. Phys. Lett. 1999, 306, 407 https://doi.org/10.1016/S0009-2614(99)00493-5
- Fast, P. L.; Corchado, J. C.; Sanchez, M. L.; Truhlar, D. G. J. Phys. Chem. A 1999, 103, 3139 https://doi.org/10.1021/jp9900382
- Fast, P. L.; Truhlar, D. G. J. Phys. Chem. A 2000, 104, 6111 https://doi.org/10.1021/jp000408i
- Kim, K. H.; Kim, Y. Theor. Chem. Acc. 2006, 115, 18 https://doi.org/10.1007/s00214-005-0069-x
- Park, C.-Y.; Kim, Y.; Kim, Y. J. Chem. Phys. 2001, 115, 2926
- Ahrland, S. In The Chemistry of the Actinide Elements, 2nd ed.; Katz, J. J., Seaborg, G. T., Moss, L. R., Eds.; Chapman and Hall Ltd.: 1986; Vol. 2, p 1521
- Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03, Rev. C.09; Gaussian, Inc.: Wallingford, CT, 2004
- Boys, S. F.; Bernardi, F. Mol. Phys. 1970, 19, 553 https://doi.org/10.1080/00268977000101561
- Rodgers, J. M.; Lynch, B. J.; Fast, P. L.; Chuang, Y.-Y.; Pu, J.; Truhlar, D. G. Multilevel-version 4.0; University of Minnesota: Minneapolis, MN, 2004
- Illies, A. J.; McKee, M. L.; Schlegel, H. B. J. Phys. Chem. A 1987, 91, 3489 https://doi.org/10.1021/j100297a007
- Jucks, K. W.; Huang, Z. S.; Miller, R. E.; Lafferty, W. J. J. Chem. Phys. 1987, 86, 4341 https://doi.org/10.1063/1.451895
- Nesbitt, D. J. Chem. Rev. 1988, 88, 843 https://doi.org/10.1021/cr00088a003
- Novick, S. E.; Davies, P. B.; Dyke, T. R.; Klemperer, W. J. Am. Chem. Soc. 1973, 95, 8547 https://doi.org/10.1021/ja00807a008
- Tsuzuki, S.; Uchimaru, T.; Mikami, M.; Tanabe, K. J. Chem. Phys. 1998, 109, 2169 https://doi.org/10.1063/1.476730
- Raveendran, P.; Wallen, S. L. J. Phys. Chem. B 2003, 107, 1473 https://doi.org/10.1021/jp027026s
Cited by
- vol.57, pp.7, 2012, https://doi.org/10.1021/je300232a
- Adsorption of Bitumen Model Compounds on Kaolinite in Liquid and Supercritical Carbon Dioxide Solvents: A Study by Periodic Density Functional Theory and Molecular Theory of Solvation vol.29, pp.5, 2015, https://doi.org/10.1021/ef502202q
- -amyl phosphate in supercritical carbon dioxide and its application to selective extraction of uranium vol.52, pp.14, 2017, https://doi.org/10.1080/01496395.2017.1287737
- Physical Chemistry Research Articles Published in the Bulletin of the Korean Chemical Society: 2003-2007 vol.29, pp.2, 2008, https://doi.org/10.5012/bkcs.2008.29.2.450
- Intermolecular Hydrogen Bonding and Vibrational Analysis of N,N-Dimethylformamide Hexamer Cluster vol.30, pp.11, 2007, https://doi.org/10.5012/bkcs.2009.30.11.2595
- Experimental determination and model correlation for the solubilities of trialkyl phosphates in supercritical carbon dioxide vol.6, pp.56, 2007, https://doi.org/10.1039/c6ra10897k
- Highly efficient and selective photoreduction of CO2 to CO with nanosheet g-C3N4 as compared with its bulk counterpart vol.195, pp.None, 2021, https://doi.org/10.1016/j.envres.2021.110880