DOI QR코드

DOI QR Code

Electrochemical Behavior of Redox Proteins Immobilized on Nafion-Riboflavin Modified Gold Electrode

  • Rezaei-Zarchi, S. (Institute of Biochemistry and Biophysics, University of Tehran) ;
  • Saboury, A.A. (Institute of Biochemistry and Biophysics, University of Tehran) ;
  • Hong, J. (Institute of Biochemistry and Biophysics, University of Tehran) ;
  • Norouzi, P. (Department of Chemistry, Faculty of Science, University of Tehran) ;
  • Moghaddam, A.B. (Department of Chemistry, Faculty of Science, University of Tehran) ;
  • Ghourchian, H. (Institute of Biochemistry and Biophysics, University of Tehran) ;
  • Ganjali, M.R. (Department of Chemistry, Faculty of Science, University of Tehran) ;
  • Moosavi-Movahedi, A.A. (Institute of Biochemistry and Biophysics, University of Tehran) ;
  • Javed, A. (Department of Chemistry, University of Agriculture) ;
  • Mohammadian, A. (Department of Biotechnology, Faculty of Science, University of Tehran)
  • Published : 2007.12.20

Abstract

Electron transfer of a redox protein at a bare gold electrode is too slow to observe the redox peaks. A novel Nafion-riboflavin functional membrane was constructed during this study and electron transfer of cytochrome c, superoxide dismutase, and hemoglobin were carried out on the functional membrane-modified gold electrode with good stability and repeatability. The immobilized protein-modified electrodes showed quasireversible electrochemical redox behaviors with formal potentials of 0.150, 0.175, and 0.202 V versus Ag/AgCl for the cytochrome c, superoxide dismutase and hemoglobin, respectively. Whole experiment was carried out in the 50 mM MOPS buffer solution with pH 6.0 at 25 oC. For the immobilized protein, the cathodic transfer coefficients were 0.67, 0.68 and 0.67 and electron transfer-rate constants were evaluated to be 2.25, 2.23 and 2.5 s?1, respectively. Hydrogen peroxide concentration was measured by the peroxidase activity of hemoglobin and our experiment revealed that the enzyme was fully functional while immobilized on the Nafion-riboflavin membrane.

Keywords

References

  1. Scheller, F. W.; Bistolas, N.; Liu, S.; Janchen, M.; Katterle, M.; Wollenberger, U. Advances in Colloid and Interface Science 2005, 116, 111 https://doi.org/10.1016/j.cis.2005.05.006
  2. Chen, H. Y.; Ju, H. X.; Xun, Y. Anal. Chem. 1994, 66, 4538 https://doi.org/10.1021/ac00096a022
  3. Drabkin, D. L.; Austin, J. H. J. Biol. Chem. 1935, 112, 105
  4. Buleandra, M.; Radu, G. L.; Tanase, I. Roum. Biotechnol. Lett. 2000, 5, 423
  5. Dolla, A.; Blanchard, L.; Guerlesquin, F. M. Bruschi, Biochimie. 1994, 76, 471 https://doi.org/10.1016/0300-9084(94)90171-6
  6. Bento, I.; Matias, P. M.; Baptista, A. M.; Costa, P. N. da; Dongen, W. M. A. M. van; Saraiva, L. M.; Schneider, T. R.; Soares, C. M.; Carrondo, M. A. Proteins 2004, 54, 135 https://doi.org/10.1002/prot.10431
  7. Bento, I.; Teixeira, V. H.; Baptista, A. M.; Soares, C. M.; Matias, P. M.; Carrondo, M. A. J. Biol. Chem. 2003, 278, 36455 https://doi.org/10.1074/jbc.M301745200
  8. Bertrand, P.; Mbarki, O.; Asso, M.; Blanchard, L.; Guerlesquin, F.; Tegoni, M. Biochem. 1995, 34, 11071 https://doi.org/10.1021/bi00035a012
  9. Springs, S. L.; Bass, S. E.; Bowman, G.; Nodelman, I.; Schutt, C. E.; McLendon, G. L. Biochemistry 2002, 41, 4321 https://doi.org/10.1021/bi012066s
  10. Bento, I.; Teixeira, V. H.; Baptista, A. M.; Soares, C. M.; Matias, P. M.; Carrondo, M. A. J. Biol. Chem. 2003, 278, 36455 https://doi.org/10.1074/jbc.M301745200
  11. Capitanio, N.; Capitanio, G.; Boffoli, D.; Papa, S. Biochemistry 2000, 39, 15454 https://doi.org/10.1021/bi001940z
  12. Rivas, L.; Soares, C. M.; Baptista , A. M.; Simaan, J.; Daniel, R. E. D. H. Biophys. J. 2005, 88, 4188 https://doi.org/10.1529/biophysj.104.057232
  13. Armstrong, F. A.; Heering, H. A.; Hirst, J. Chem. Soc. Rev. 1997, 26, 169 https://doi.org/10.1039/cs9972600169
  14. Sucheta, A.; Ackrell, B.; Cochran, F. A. Nature 1992, 356, 361 https://doi.org/10.1038/356361a0
  15. Rusling, J. F. Acc. Chem. Res. 1998, 31, 363 https://doi.org/10.1021/ar970254y
  16. Rusling, J. F.; Nassar, A. E. F. J. Am. Chem. Soc. 1993, 115, 11891 https://doi.org/10.1021/ja00078a030
  17. Fan, C. H.; Pang, J. T.; Shen, P. P.; Li, G.; Zhu, D. X. Anal. Sci. 2002, 2, 129
  18. Fan, C. H.; Zhuang, Y.; Li, G. X.; Zhu, J. Q.; Zhu, D. X. Electroanalysis 2000, 14, 1156
  19. Lvov, Y. M.; Lu, Z. Q.; Schenkman, J. B.; Zu, X. L.; Rusling, J. F. J. Am. Chem. Soc. 1998, 120, 4073 https://doi.org/10.1021/ja9737984
  20. Turner, A. P. F.; Karube, I.; Wilson, G. S. Biosensors: Fundamentals and Applications; Oxford University Press: Oxford, 1987
  21. Hong, J.; Ghourchian, H.; Moosavi-Movahedi, A. A. Electrochemistry Communications 2006, 8, 1572 https://doi.org/10.1016/j.elecom.2006.07.011
  22. Andrieux, C. P.; Audebert, P.; Divisia-Blohorn, B.; Aldebert, P.; Michalak, F. J. Electroanal. Chem. 1990, 296, 117
  23. Furbee Jr, J. W.; Thomas, C. R.; Kelly, R. S.; Malachowski, M. R. Anal. Chem. 1993, 65, 1654 https://doi.org/10.1021/ac00061a004
  24. Liu, H. Y.; Deng, J. Q. Electrochim. Acta 1995, 40, 1845 https://doi.org/10.1016/0013-4686(95)00099-Z
  25. Bruice, T. C. Acc. Chem. Res. 1980, 13, 256 https://doi.org/10.1021/ar50152a002
  26. Bruice, T. C. In Flavins and Flavoproteins; Bray, R. C.; Engel, P. C.; Mayhew, S. E., Eds.; Walter De Gruyter and Co.: New York, 1984; p 45
  27. Friedman, R. M. J. Electroanal. Chem. 1999, 472, 147 https://doi.org/10.1016/S0022-0728(99)00295-8
  28. Cosnier, S.; Decout, M.; Fontecave, J. L.; Frier, C.; Innocent, C. Electroanalysis 1998, 10, 521 https://doi.org/10.1002/(SICI)1521-4109(199807)10:8<521::AID-ELAN521>3.0.CO;2-R
  29. Ogino, Y.; Takagi, K.; Kano, K.; Iketa, T. J. Electroanal. Chem. 1995, 396, 517 https://doi.org/10.1016/0022-0728(95)04089-7
  30. Yamashita, M.; Rosatto, S. S.; Kubota, L. T. J. Braz. Chem. Soc. 2002, 13, 635 https://doi.org/10.1590/S0103-50532002000500015
  31. Tian, Y.; Ariga, T.; Takashima, N.; Okajima, T. Electrochem. Comm. 2004, 6, 609 https://doi.org/10.1016/j.elecom.2004.04.013
  32. McNeil, C. J.; Greenough, K. R.; Weeks, P. A.; Cooper, J. M.; Free Radical Res. Commun. 1992, 17, 143 https://doi.org/10.3109/10715769209082271
  33. Laviron, E. J. Electroanal. Chem. 1974, 52, 355 https://doi.org/10.1016/S0022-0728(74)80448-1
  34. Laviron, E. J. Electroanal. Chem. 1979, 101, 19 https://doi.org/10.1016/S0022-0728(79)80075-3
  35. Murry, R. W. Electroanal. Chem.; Marcel Dekker: New York, 1984
  36. Gleria, K. D.; Hill, H. A. O.; Lowe, V. J.; Page, D. J. J. Electroanal. Chem. 1986, 213, 333 https://doi.org/10.1016/0022-0728(86)80216-9
  37. Brookman, P. J.; Nicholson, J. W. Developments in Ionic Polymers, vol. 2; Wilson, A. D., Prosser, H. J., Eds.; Elsevier Applied Science Publishers: London, 1986; p 269

Cited by

  1. Stripping Voltammetric Determination of Analgesics in Their Pharmaceuticals Using Nano-Riboflavin-Modified Glassy Carbon Electrode vol.2011, pp.2090-3537, 2011, https://doi.org/10.4061/2011/269452
  2. Direct Electrochemistry of Hemoglobin Immobilized on a Functionalized Multi-Walled Carbon Nanotubes and Gold Nanoparticles Nanocomplex-Modified Glassy Carbon Electrode vol.13, pp.7, 2013, https://doi.org/10.3390/s130708595
  3. Immobilization of Hansenula polymorpha Alcohol Oxidase for Alcohol Biosensor Applications vol.30, pp.1, 2009, https://doi.org/10.5012/bkcs.2009.30.1.057