DOI QR코드

DOI QR Code

Synthesis and Properties of Hexyl End-Capped Thiophene Oligomers Containing Anthracene Moiety in the Center

  • Choi, Jung-Hei (Department of Chemistry and the Center for Plastic Information System, Pusan National University) ;
  • Cho, Dae-Won (Department of Chemistry, Chosun University) ;
  • Jin, Sung-Ho (Department of Chemistry Education and the Center for Plastic Information System, Pusan National University) ;
  • Yoon, Ung-Chan (Department of Chemistry and the Center for Plastic Information System, Pusan National University)
  • Published : 2007.07.20

Abstract

A series of new organic semiconductors hexyl end-capped thiophene-anthracene oligomers containing the anthracene moiety in the center of the oligomers are synthesized. The target oligomers have been obtained by Stille coupling reactions as key step reactions. The synthesized thiophene-anthracene oligomers were characterized by 1H-NMR, 13C-NMR and high-resolution mass spectroscopy, respectively. All of the oligomers are soluble in chlorinated solvents. Their optical, thermal and electrochemical properties were measured. The hexyl end-capped oligomers and their unsubstituted oligomers exhibit the same absorption behavior in dilute toluene solution. Hexyl end-capped bis-terthienylanthracene oligomer is observed to show liquid crystalline mesophase at 166 oC in heating process. The thermal analyses as well as the electrochemical measurement data indicate that the designed materials show better thermal and oxidation stability than the corresponding oligothiophenes without anthracene core. Fluorescence lifetimes and fluorescence quantum yields of the thiophene-anthracene oligomers are measured to be 10-14 ps and 3.4-9.9 × 10?3 which are much shorter and lower than those of oligothiophenes respectively.

Keywords

References

  1. Barbarella, G.; Favaretto, L.; Sotgiu, G.; Zambianchi, M.; Bongini, A.; Arbizzani, C.; Mastragostino, M.; Anni, M.; Gigli, G.; Cingolani, R. J. Am. Chem. Soc. 2000, 122, 11971 https://doi.org/10.1021/ja002037p
  2. Ho, H. A.; Brisset, H.; Elandaloussi, E. H.; Frere, P.; Roncali, J. Adv. Mater. 1996, 8, 990 https://doi.org/10.1002/adma.19960081210
  3. Hicks, R. G.; Nodwell, M. B. J. Am. Chem. Soc. 2000, 122, 6746 https://doi.org/10.1021/ja000752t
  4. Lee, Y.-H.; Cho, Y. H.; Shin, H.; Kim, J.; Lee, J.; Lee, H.; Sung, M. M. Bull. Korean Chem. Soc. 2006, 27, 1633 https://doi.org/10.5012/bkcs.2006.27.10.1633
  5. Burroughes, J. H.; Bradley, D. D. C.; Brown, A. R.; Marks, R. N.; Mackay, K.; Friend, R. H.; Burn, P. L.; Holmes, A. B. Nature 1990, 347, 539 https://doi.org/10.1038/347539a0
  6. Lee, W. L.; An, J.-G.; Yoon, H.-K.; Jang, H.; Kim, N. G.; Do, Y. Bull. Korean Chem. Soc. 2005, 26, 1569 https://doi.org/10.5012/bkcs.2005.26.10.1569
  7. Horowitz, G. Adv. Mater. 1998, 10, 365 https://doi.org/10.1002/(SICI)1521-4095(199803)10:5<365::AID-ADMA365>3.0.CO;2-U
  8. Katz, H. E.; Lovinger, A. J.; Johnson, J.; Kloc, C.; Siegrist, T.; Li, W.; Lin, Y. Y.; Dodabalapur, A. Nature 2000, 404, 478 https://doi.org/10.1038/35006603
  9. Sariciftci, N. S.; Smilowitz, L.; Heeger, A. J.; Wudl, F. Science 1992, 258, 1474 https://doi.org/10.1126/science.258.5087.1474
  10. Yu, G.; Gao, J.; Hummelen, J. C.; Wudl, F.; Heeger, A. J. Science 1995, 270, 1789 https://doi.org/10.1126/science.270.5243.1789
  11. Kang, M. S.; Oh, J. B.; Roh, S. G.; Kim, M.-R.; Lee, J. K.; Jin, S.-H.; Kim, H. K. Bull. Korean Chem. Soc. 2007, 28, 33 https://doi.org/10.5012/bkcs.2007.28.1.033
  12. Newman, C. R.; Frisbie, C. D.; da Silva Filho, D. A.; Bredas, J.-L.; Ewbank, P. C.; Mann, K. R. Chem. Mater. 2004, 16, 4436 https://doi.org/10.1021/cm049391x
  13. Dimitrakopoulos, C. D.; Malenfant, P. R. L. Adv. Mater. 2002, 14, 99 https://doi.org/10.1002/1521-4095(20020116)14:2<99::AID-ADMA99>3.0.CO;2-9
  14. Katz, H. E.; Bao, Z.; Gilat, S. L. Acc. Chem. Res. 2001, 34, 359 https://doi.org/10.1021/ar990114j
  15. Facchetti, A.; Mushrush, M.; Katz, H. E.; Marks, T. J. Adv. Mater. 2003, 15, 33 https://doi.org/10.1002/adma.200390003
  16. Sheraw, C. D.; Jackson, T. N.; Eaton, D. L.; Anthony, J. E. Adv. Mater. 2003, 15, 2009 https://doi.org/10.1002/adma.200305393
  17. Klauk, H.; Halik, M.; Zshieschang, U.; Schmid, G.; Radlik, W.; Weber, W. J. Appl. Phys. 2002, 92, 5259 https://doi.org/10.1063/1.1511826
  18. Sheraw, C. D.; Zhou, L.; Huang, J. R.; Gundlach, D. J.; Jackson, T. N.; Kane, M. G.; Hill, I. G.; Hammond, M. S.; Campi, J.; Greening, B. K.; Francl, J.; West, J. Appl. Phys. Lett. 2002, 80, 1088 https://doi.org/10.1063/1.1448659
  19. Pope, M.; Swenberg, C. E. Electronic Processes in Organic Crystals and Polymers; Oxford University Press: New York, 1999; p 234
  20. Karl, N.; Marktanner, J. Mol. Cryst. Liq. Cryst. 2001, 355, 149 https://doi.org/10.1080/10587250108023659
  21. Ito, K.; Suzuki, T.; Sakamoto, Y.; Kubota, D.; Inoue, Y.; Sato, F.; Tokito, S. Angew. Chem. Int. Ed. 2003, 42, 1159 https://doi.org/10.1002/anie.200390305
  22. Meng, H.; Sun, F.; Goldfinger, M. B.; Jaycox, G. D.; Li, Z.; Marshall, W. J.; Blackman, G. S. J. Am. Chem. Soc. 2005, 127, 2406 https://doi.org/10.1021/ja043189d
  23. Ando, S.; Nishida, J.-i.; Fujiwara, E.; Tada, H.; Inoue, Y.; Tokito, S.; Yamashita, Y. Chem. Mater. 2005, 17, 1261 https://doi.org/10.1021/cm0478632
  24. Garnier, F.; Yassar, A.; Hajlaoui, R.; Horowitz, G.; Deloffre, F.; Servet, B.; Ries, S.; Alnot, P. J. Am. Chem. Soc. 1993, 115, 8716 https://doi.org/10.1021/ja00072a026
  25. Raposo, M. M. M.; Fonseca, A. M. C.; Kirsch, G. Tetrahedron 2004, 60, 4071 https://doi.org/10.1016/j.tet.2004.03.022
  26. Murov, S. L.; Carmichael, I.; Hug, G. L. Handbook of Photochemistry, 2nd ed; Marcel Dekker: New York, 1993
  27. Kotha, S.; Ghosh, A. K.; Deodhar, K. D. Synthesis 2004, 4, 549
  28. Facchetti, A.; Yoon, M.-H.; Stern, C. L.; Hutchison, G. R.; Ratner, M. A.; Marks, T. J. J. Am. Chem. Soc. 2004, 126, 13480 https://doi.org/10.1021/ja048988a
  29. Nessakh, B.; Horowitz, G.; Garnier, F.; Deloffre, F.; Srivastava, P.; Yassar, A. J. Electroanal. Chem. 1995, 399, 97 https://doi.org/10.1016/0022-0728(95)04224-5
  30. Lap, D. V.; Grebner, D.; Rentsch, S. J. Phys. Chem. A 1997, 101, 107 https://doi.org/10.1021/jp961670n
  31. Chosrovian, H.; Rentsch, S.; Grebner, D.; Dahm, D. U.; Birckner, E.; Naarmann, H. Synth. Met. 1993, 60, 23 https://doi.org/10.1016/0379-6779(93)91178-5
  32. Garcia, P.; Pernaut, J. M.; Hapiot, P.; Wintgens, V.; Valat, P.; Garnier, F.; Delabouglise, D. J. Phys. Chem. 1993, 97, 513 https://doi.org/10.1021/j100104a040
  33. Becker, R. S.; Seixas de Melo, J.; Macanita, A. L.; Elisei, F. J. Phys. Chem. 1996, 100, 18683 https://doi.org/10.1021/jp960852e
  34. Wintgens, V.; Valat, P.; Garnier. F. J. Phys. Chem. 1994, 98, 228 https://doi.org/10.1021/j100052a038
  35. Facchetti, A.; Deng, H.; Wang, A. C.; Koide, Y.; Sirrinhaus, H.; Marks, T. J.; Friend, R. H. Angew. Chem. Int. Ed. 2000, 39, 4547 https://doi.org/10.1002/1521-3773(20001215)39:24<4547::AID-ANIE4547>3.0.CO;2-J
  36. Tian, H.; Wang, J.; Shi, J.; Yan, D.; Wang, L.; Geng, Y.; Wang, F. J. Mater. Chem. 2005, 15, 3026 https://doi.org/10.1039/b504044b

Cited by

  1. Synthesis and Characterization of Soluble Silyl End-capped Arene-Thiophene Co-Oligomers vol.36, pp.5, 2015, https://doi.org/10.1002/bkcs.10257
  2. Synthesis and Properties of Soluble and Stable Silyl End-capped Bis-thienylanthracene Oligomers vol.28, pp.11, 2007, https://doi.org/10.5012/bkcs.2007.28.11.1931
  3. Synthesis and Physical Properties of Decylbithiophene End-Capped Oligomers Based on Naphthalene, Anthracene and Benzo[1,2-b:4,5-b']dithiophene vol.30, pp.3, 2007, https://doi.org/10.5012/bkcs.2009.30.3.618
  4. Synthesis of 10-Arylanthracenes from 2-Fluorobenzophenones and Arylacetonitriles via a One-Pot SNAr and Anionic Cyclization Cascade vol.31, pp.3, 2007, https://doi.org/10.5012/bkcs.2010.31.03.708
  5. Synthesis and Characterization of Bis-Thienyl-9,10-anthracenes Containing Electron Withdrawing 2-Cyanoacrylic Acid or 2-Methylenemalononitrile Group vol.32, pp.8, 2011, https://doi.org/10.5012/bkcs.2011.32.8.3081