References
- Barbarella, G.; Favaretto, L.; Sotgiu, G.; Zambianchi, M.; Bongini, A.; Arbizzani, C.; Mastragostino, M.; Anni, M.; Gigli, G.; Cingolani, R. J. Am. Chem. Soc. 2000, 122, 11971 https://doi.org/10.1021/ja002037p
- Ho, H. A.; Brisset, H.; Elandaloussi, E. H.; Frere, P.; Roncali, J. Adv. Mater. 1996, 8, 990 https://doi.org/10.1002/adma.19960081210
- Hicks, R. G.; Nodwell, M. B. J. Am. Chem. Soc. 2000, 122, 6746 https://doi.org/10.1021/ja000752t
- Lee, Y.-H.; Cho, Y. H.; Shin, H.; Kim, J.; Lee, J.; Lee, H.; Sung, M. M. Bull. Korean Chem. Soc. 2006, 27, 1633 https://doi.org/10.5012/bkcs.2006.27.10.1633
- Burroughes, J. H.; Bradley, D. D. C.; Brown, A. R.; Marks, R. N.; Mackay, K.; Friend, R. H.; Burn, P. L.; Holmes, A. B. Nature 1990, 347, 539 https://doi.org/10.1038/347539a0
- Lee, W. L.; An, J.-G.; Yoon, H.-K.; Jang, H.; Kim, N. G.; Do, Y. Bull. Korean Chem. Soc. 2005, 26, 1569 https://doi.org/10.5012/bkcs.2005.26.10.1569
- Horowitz, G. Adv. Mater. 1998, 10, 365 https://doi.org/10.1002/(SICI)1521-4095(199803)10:5<365::AID-ADMA365>3.0.CO;2-U
- Katz, H. E.; Lovinger, A. J.; Johnson, J.; Kloc, C.; Siegrist, T.; Li, W.; Lin, Y. Y.; Dodabalapur, A. Nature 2000, 404, 478 https://doi.org/10.1038/35006603
- Sariciftci, N. S.; Smilowitz, L.; Heeger, A. J.; Wudl, F. Science 1992, 258, 1474 https://doi.org/10.1126/science.258.5087.1474
- Yu, G.; Gao, J.; Hummelen, J. C.; Wudl, F.; Heeger, A. J. Science 1995, 270, 1789 https://doi.org/10.1126/science.270.5243.1789
- Kang, M. S.; Oh, J. B.; Roh, S. G.; Kim, M.-R.; Lee, J. K.; Jin, S.-H.; Kim, H. K. Bull. Korean Chem. Soc. 2007, 28, 33 https://doi.org/10.5012/bkcs.2007.28.1.033
- Newman, C. R.; Frisbie, C. D.; da Silva Filho, D. A.; Bredas, J.-L.; Ewbank, P. C.; Mann, K. R. Chem. Mater. 2004, 16, 4436 https://doi.org/10.1021/cm049391x
- Dimitrakopoulos, C. D.; Malenfant, P. R. L. Adv. Mater. 2002, 14, 99 https://doi.org/10.1002/1521-4095(20020116)14:2<99::AID-ADMA99>3.0.CO;2-9
- Katz, H. E.; Bao, Z.; Gilat, S. L. Acc. Chem. Res. 2001, 34, 359 https://doi.org/10.1021/ar990114j
- Facchetti, A.; Mushrush, M.; Katz, H. E.; Marks, T. J. Adv. Mater. 2003, 15, 33 https://doi.org/10.1002/adma.200390003
- Sheraw, C. D.; Jackson, T. N.; Eaton, D. L.; Anthony, J. E. Adv. Mater. 2003, 15, 2009 https://doi.org/10.1002/adma.200305393
- Klauk, H.; Halik, M.; Zshieschang, U.; Schmid, G.; Radlik, W.; Weber, W. J. Appl. Phys. 2002, 92, 5259 https://doi.org/10.1063/1.1511826
- Sheraw, C. D.; Zhou, L.; Huang, J. R.; Gundlach, D. J.; Jackson, T. N.; Kane, M. G.; Hill, I. G.; Hammond, M. S.; Campi, J.; Greening, B. K.; Francl, J.; West, J. Appl. Phys. Lett. 2002, 80, 1088 https://doi.org/10.1063/1.1448659
- Pope, M.; Swenberg, C. E. Electronic Processes in Organic Crystals and Polymers; Oxford University Press: New York, 1999; p 234
- Karl, N.; Marktanner, J. Mol. Cryst. Liq. Cryst. 2001, 355, 149 https://doi.org/10.1080/10587250108023659
- Ito, K.; Suzuki, T.; Sakamoto, Y.; Kubota, D.; Inoue, Y.; Sato, F.; Tokito, S. Angew. Chem. Int. Ed. 2003, 42, 1159 https://doi.org/10.1002/anie.200390305
- Meng, H.; Sun, F.; Goldfinger, M. B.; Jaycox, G. D.; Li, Z.; Marshall, W. J.; Blackman, G. S. J. Am. Chem. Soc. 2005, 127, 2406 https://doi.org/10.1021/ja043189d
- Ando, S.; Nishida, J.-i.; Fujiwara, E.; Tada, H.; Inoue, Y.; Tokito, S.; Yamashita, Y. Chem. Mater. 2005, 17, 1261 https://doi.org/10.1021/cm0478632
- Garnier, F.; Yassar, A.; Hajlaoui, R.; Horowitz, G.; Deloffre, F.; Servet, B.; Ries, S.; Alnot, P. J. Am. Chem. Soc. 1993, 115, 8716 https://doi.org/10.1021/ja00072a026
- Raposo, M. M. M.; Fonseca, A. M. C.; Kirsch, G. Tetrahedron 2004, 60, 4071 https://doi.org/10.1016/j.tet.2004.03.022
- Murov, S. L.; Carmichael, I.; Hug, G. L. Handbook of Photochemistry, 2nd ed; Marcel Dekker: New York, 1993
- Kotha, S.; Ghosh, A. K.; Deodhar, K. D. Synthesis 2004, 4, 549
- Facchetti, A.; Yoon, M.-H.; Stern, C. L.; Hutchison, G. R.; Ratner, M. A.; Marks, T. J. J. Am. Chem. Soc. 2004, 126, 13480 https://doi.org/10.1021/ja048988a
- Nessakh, B.; Horowitz, G.; Garnier, F.; Deloffre, F.; Srivastava, P.; Yassar, A. J. Electroanal. Chem. 1995, 399, 97 https://doi.org/10.1016/0022-0728(95)04224-5
- Lap, D. V.; Grebner, D.; Rentsch, S. J. Phys. Chem. A 1997, 101, 107 https://doi.org/10.1021/jp961670n
- Chosrovian, H.; Rentsch, S.; Grebner, D.; Dahm, D. U.; Birckner, E.; Naarmann, H. Synth. Met. 1993, 60, 23 https://doi.org/10.1016/0379-6779(93)91178-5
- Garcia, P.; Pernaut, J. M.; Hapiot, P.; Wintgens, V.; Valat, P.; Garnier, F.; Delabouglise, D. J. Phys. Chem. 1993, 97, 513 https://doi.org/10.1021/j100104a040
- Becker, R. S.; Seixas de Melo, J.; Macanita, A. L.; Elisei, F. J. Phys. Chem. 1996, 100, 18683 https://doi.org/10.1021/jp960852e
- Wintgens, V.; Valat, P.; Garnier. F. J. Phys. Chem. 1994, 98, 228 https://doi.org/10.1021/j100052a038
- Facchetti, A.; Deng, H.; Wang, A. C.; Koide, Y.; Sirrinhaus, H.; Marks, T. J.; Friend, R. H. Angew. Chem. Int. Ed. 2000, 39, 4547 https://doi.org/10.1002/1521-3773(20001215)39:24<4547::AID-ANIE4547>3.0.CO;2-J
- Tian, H.; Wang, J.; Shi, J.; Yan, D.; Wang, L.; Geng, Y.; Wang, F. J. Mater. Chem. 2005, 15, 3026 https://doi.org/10.1039/b504044b
Cited by
- Synthesis and Characterization of Soluble Silyl End-capped Arene-Thiophene Co-Oligomers vol.36, pp.5, 2015, https://doi.org/10.1002/bkcs.10257
- Synthesis and Properties of Soluble and Stable Silyl End-capped Bis-thienylanthracene Oligomers vol.28, pp.11, 2007, https://doi.org/10.5012/bkcs.2007.28.11.1931
- Synthesis and Physical Properties of Decylbithiophene End-Capped Oligomers Based on Naphthalene, Anthracene and Benzo[1,2-b:4,5-b']dithiophene vol.30, pp.3, 2007, https://doi.org/10.5012/bkcs.2009.30.3.618
- Synthesis of 10-Arylanthracenes from 2-Fluorobenzophenones and Arylacetonitriles via a One-Pot SNAr and Anionic Cyclization Cascade vol.31, pp.3, 2007, https://doi.org/10.5012/bkcs.2010.31.03.708
- Synthesis and Characterization of Bis-Thienyl-9,10-anthracenes Containing Electron Withdrawing 2-Cyanoacrylic Acid or 2-Methylenemalononitrile Group vol.32, pp.8, 2011, https://doi.org/10.5012/bkcs.2011.32.8.3081