DOI QR코드

DOI QR Code

Expression of a Small Protein Encoded by the 3' Flanking Sequence of the Escherichia coli rnpB Gene

  • Kim, Yool (Department of Chemistry and Center for Molecular Design and Synthesis, Korea Advanced Institute of Science and Technology) ;
  • Han, Kook (Department of Chemistry and Center for Molecular Design and Synthesis, Korea Advanced Institute of Science and Technology) ;
  • Lee, Jung-Min (Department of Chemistry and Center for Molecular Design and Synthesis, Korea Advanced Institute of Science and Technology) ;
  • Kim, Kwang-Sun (Department of Chemistry and Center for Molecular Design and Synthesis, Korea Advanced Institute of Science and Technology) ;
  • Lee, Young-Hoon (Department of Chemistry and Center for Molecular Design and Synthesis, Korea Advanced Institute of Science and Technology)
  • Published : 2007.06.20

Abstract

M1 RNA is the catalytic component of RNase P, a tRNA-processing enzyme in Escherichia coli. M1 RNA is produced in the cell by transcription of the rnpB gene and subsequent processing at the 3' end. The 3' flanking region of rnpB contains repeated sets of overlapping sequences coding for small proteins. The issue of whether these proteins are expressed remains to be established. In this study, we showed the expression of a small protein encoded by the first repeat within the 3' flanking region of rnpB. Interestingly, protein expression was increased at lower temperatures. The termination efficiency of rnpB terminators was decreased at lower temperatures, suggesting that antitermination is responsible for enhanced protein expression. Moreover, the purified small protein contained M1 RNA, implying a role as a specific RNA-binding protein.

Keywords

References

  1. Li, Y.; Altman, S. Proc. Natl. Acad. Sci. USA 2003, 100, 13213 https://doi.org/10.1073/pnas.2235589100
  2. Komine, Y.; Kitabatake, M.; Yokogawa, T.; Nishikawa, K.; Inokuchi, H. Proc. Natl. Acad. Sci. USA 1994, 73, 1912 https://doi.org/10.1073/pnas.73.6.1912
  3. Bourgaize, D. B.; Fournier, M. J. Nature 1987, 325, 281 https://doi.org/10.1038/325281a0
  4. Bothwell, A. L.; Garber, R. L.; Altman, S. J. Biol. Chem. 1976, 251, 7709
  5. Robertson, H. D.; Altman, S.; Smith, J. D. J. Biol. Chem. 1972, 247, 5243
  6. Kurz, J. C.; Fierke, C. A. Curr. Opin. Chem. Biol. 2000, 4, 553 https://doi.org/10.1016/S1367-5931(00)00131-9
  7. Frank, D. N.; Pace, N. R. Annu. Rev. Biochem. 1998, 67, 153 https://doi.org/10.1146/annurev.biochem.67.1.153
  8. Altman, S.; Baer, M.; Guerrier-Takada, C.; Vioque, A. Trends Biochem. Sci. 1986, 11, 515
  9. Guerrier-Takada, C.; Gardiner, K.; Marsh, T.; Pace, N. R.; Altman, S. Cell 1983, 35, 849
  10. Sakano, H.; Yamada, S.; Ikemura, T.; Shimura, Y.; Ozeki, H. Nucleic Acids Res. 1974, 1, 355 https://doi.org/10.1093/nar/1.3.355
  11. Peck-Miller, K. A.; Altman, S. J. Mol. Biol. 1991, 221, 1
  12. Lumelsky, N.; Altman, S. J. Mol. Biol. 1988, 202, 443 https://doi.org/10.1016/0022-2836(88)90277-X
  13. Guerrier-Takada, C.; Lumelsky, N.; Altman, S. Science 1989, 246, 1578
  14. Lee, Y.; Ramamoorth, R.; Park, C.-U.; Schmidt, F. J. J. Biol. Chem. 1989, 264, 5098
  15. Sakamoto, H.; Kimura, N.; Shimura, Y. Proc. Natl. Acad. Sci. USA 1983, 80, 6187 https://doi.org/10.1073/pnas.80.20.6187
  16. Kim, S.; Kim, H.; Park, I.; Lee, Y. J. Biol. Chem. 1996, 271, 19330 https://doi.org/10.1074/jbc.271.32.19330
  17. Lee, Y. M.; Lee, Y.; Park, C.-U. Korean Biochem. J. 1989, 22, 276
  18. Adhya, S.; Gottesman, M. Annu. Rev. Biochem. 1978, 47, 967 https://doi.org/10.1146/annurev.bi.47.070178.004535
  19. Platt, T. Annu. Rev. Biochem. 1986, 55, 339 https://doi.org/10.1146/annurev.bi.55.070186.002011
  20. Yagar, T. D.; von Hippel, P. H. In Escherichia coli and Salmoella typhymurium: Cellular and Molecular Biology; Neidhardt, F. C., Ed.; American Society for Microbiology: Washington, DC., 1987; pp 1241-1275
  21. Kim, S.; Lee, Y. FEBS Lett. 1997, 407, 353 https://doi.org/10.1016/S0014-5793(97)00377-3
  22. Kim, M.; Park, B. H.; Lee, Y. Biochem. Biophys. Res. Commun. 2000, 268, 118 https://doi.org/10.1006/bbrc.2000.2084
  23. Shine, J.; Dalgarno, L. Nature 1975, 254, 34 https://doi.org/10.1038/254034a0
  24. Phadtare, S.; Severinov, K. Nucleic Acids Res. 2005, 33, 5583 https://doi.org/10.1093/nar/gki859
  25. Phadtare, S.; Inouye, M.; Severinov, K. J. Biol. Chem. 2002, 277, 7239 https://doi.org/10.1074/jbc.M111496200
  26. Bae, W.; Xia, B.; Inouye, M.; Severunov, K. Proc. Natl. Acad. Sci. USA 2000, 97, 7784 https://doi.org/10.1073/pnas.97.14.7784
  27. Dalboge, H.; Carlsen, S.; Jensen, E. B.; Christensen, T.; Dahl, H. H. DNA 1988, 7, 399 https://doi.org/10.1089/dna.1.1988.7.399
  28. Lee, S. J.; Ko, J.; Kang, H. Y.; Lee, Y. Biochem. Biophys. Res. Commun. 2006, 346, 1009 https://doi.org/10.1016/j.bbrc.2006.06.009
  29. Lee, J. H.; Kim, H.; Ko, J.; Lee, Y. Nucleic Acids Res. 2002, 30, 5360 https://doi.org/10.1093/nar/gkf694
  30. Kim, K. S.; Ryoo, H.; Lee, J. H.; Kim, M.; Kim, T.; Kim, Y.; Han, K.; Lee, S. H.; Lee, Y. Bull. Korean Chem. Soc. 2006, 27, 699 https://doi.org/10.5012/bkcs.2006.27.5.699

Cited by

  1. Effects of Overexpression of C5 Protein on rnpB Gene Expression in Escherichia coli vol.30, pp.4, 2007, https://doi.org/10.5012/bkcs.2009.30.4.791
  2. Implication of RNases PH in Turnover of M1 RNA vol.31, pp.7, 2007, https://doi.org/10.5012/bkcs.2010.31.7.2081