DOI QR코드

DOI QR Code

Band Gap Tuning in Nanoporous TiO2-ZrO2 Hybrid Thin Films

  • Published : 2007.12.20

Abstract

Nanoporous TiO2 and ZrO2 thin films were spin-coated using a surfactant-templated approach from Pluronic P123 (EO20PO70EO20) as the templating agent, titanium alkoxide (Ti(OC4H9)4) as the inorganic precursor, and butanol as a the solvent. The control of the electronic structure of TiO2 is crucial for its various applications. We found that the band gap of the hybrid nanoporous thin films can be easily tuned by adding an acetylacetonestabilized Zr(OC4H9)4 precursor to the precursor solution of Ti(OC4H9)4. Pores with a diameter of 5 nm-10 nm were randomly dispersed and partially connected to each other inside the films. TiO2 and ZrO2 thin films have an anatase structure and tetragonal structure, respectively, while the TiO2-ZrO2 hybrid film exhibited no crystallinity. The refractive index was significantly changed by varying the atomic ratio of titanium to zirconium. The band gap for the nanoporous TiO2 was estimated to 3.43 eV and that for the TiO2-ZrO2 hybrid film was 3.61 eV.

Keywords

References

  1. Chrysicopoulou, P.; Davazoglou, D.; Trapalis, Chr.; Kordas, G. Thin Solid Films 1998, 323, 188 https://doi.org/10.1016/S0040-6090(97)01018-3
  2. Hoffmann, M. R.; Martin, S. T.; Choi, W.; Bahnemann, D. W. Chem. Rev. 1995, 95, 69 https://doi.org/10.1021/cr00033a004
  3. Smirnova, N.; Gnatyuk, Y.; Eremenko, A.; Kolbasov, G.; Vorobetz, V.; Kolbasova, I.; Linyucheva, O. Int. J. Photoenergy 2006, article ID 85469, pages 1-6
  4. Lien, S. Y.; Wuu, D. S.; Yeh, W. C.; Liu, J. C. Solar Energy Materials and Solar Cells 2006, 90, 2710-2719 https://doi.org/10.1016/j.solmat.2006.04.001
  5. Okuya, M.; Nakade, K.; Kaneko, S. Solar Energy Materials and Solar Cells 2002, 70, 425 https://doi.org/10.1016/S0927-0248(01)00033-2
  6. Zukalova, M.; Zukal, A.; Kavan, L.; Nazeeruddin, M. K.; Liska, P.; Grazel, M. Nano Lett. 2005, 5, 1789 https://doi.org/10.1021/nl051401l
  7. Kim, S. K.; Kim, W. D.; Kim, K. M.; Hwang, C. S.; Jeong, J. Appl. Phys. Lett. 2004, 85, 4112 https://doi.org/10.1063/1.1812832
  8. Wang, C. W.; Chen, S. F.; Chen, G. T. J. Appl. Phys. 2002, 91, 9198 https://doi.org/10.1063/1.1473668
  9. Facchetti, A.; Yoon, M. H.; Marks, T. J. Adv. Mater. 2005, 17, 1705 https://doi.org/10.1002/adma.200500517
  10. Wilk, G. D.; Wallace, R. M.; Anthony, J. M. J. Appl. Phys. 2001, 89, 5243 https://doi.org/10.1063/1.1361065
  11. Tang, J.; Fabbri, J.; Robinson, R. D.; Zhu, Y.; Herman, I. P.; Steigerwald, M. L.; Brus, L. E. Chem. Mater. 2004, 16, 1336 https://doi.org/10.1021/cm049945w
  12. Barlage, D.; Arghavani, R.; Dewey, G.; Doczy, M.; Doyle, B.; Kavalieros, J.; Murthy, A.; Roberds, B.; Stokley, P.; Chau, R. International Electron Devices Meeting, Technical Digest; 2001; pp 10.6.1-10.6.4
  13. Kim, D. J.; Hahn, S. H.; Oh, S. H.; Kim, E. J. Mater. Lett. 2002, 57, 355-360 https://doi.org/10.1016/S0167-577X(02)00790-5
  14. Alberius, P. C. A.; Frindell, K. L.; Hayward, R. C.; Kramer, E. J.; Stucky, G. D.; Chmelka, B. F. Chem. Mater. 2002, 14, 3284 https://doi.org/10.1021/cm011209u
  15. Chi, S. Y.; Marmak, M.; Coombs, N.; Chopra, N.; Ozin, G. A. Adv. Funct. Mater. 2004, 14, 335 https://doi.org/10.1002/adfm.200305039
  16. Diebold, U. Surf. Sci. Rep. 2003, 48, 53 https://doi.org/10.1016/S0167-5729(02)00100-0
  17. Aguilar-Frutis, M.; Reyna-Garcia, G.; Garcia-Hipolito, M.; Gyzman- Mendoza, J. J. Vac. Sci. Technol. A 2004, 22, 1319 https://doi.org/10.1116/1.1701866
  18. Yim, J. H.; Baklanov, M. R.; Gidley, D. W.; Peng, H.; Jeong, H. D.; Pu, L. S. J. Phys. Chem. B 2004, 108, 8953 https://doi.org/10.1021/jp049738j
  19. Zhu, L. Q.; Fang, Q.; He, G.; Liu, M.; Zhang, L. D. J. Phys. D: Appl. Phys. 2006, 39, 5285 https://doi.org/10.1088/0022-3727/39/24/027
  20. Lundqvist, M. J.; Nilsing, M.; Persson, P.; Lunell, S. Int. J. Quantum Chem. 2006, 106, 3214 https://doi.org/10.1002/qua.21088

Cited by

  1. Nanostructures vol.119, pp.35, 2015, https://doi.org/10.1021/acs.jpcc.5b04978
  2. Monitoring the intramolecular charge transfer process in the Z907 solar cell sensitizer: a transient Vis and IR spectroscopy and ab initio investigation vol.17, pp.33, 2015, https://doi.org/10.1039/C5CP03314D
  3. Films Showing Accelerated Bacterial Inactivation vol.7, pp.23, 2015, https://doi.org/10.1021/acsami.5b02168
  4. Ultrafast Dynamics of Hole Injection and Recombination in Organometal Halide Perovskite Using Nickel Oxide as p-Type Contact Electrode vol.7, pp.7, 2016, https://doi.org/10.1021/acs.jpclett.6b00238
  5. Thin Films Prepared by Sol-Gel Spin Coating Method vol.132, pp.3, 2017, https://doi.org/10.12693/APhysPolA.132.612
  6. Thin Films Prepared by Sol-Gel Spin-Coating Method vol.132, pp.3, 2017, https://doi.org/10.12693/APhysPolA.132.620
  7. Physical Chemistry Research Articles Published in the Bulletin of the Korean Chemical Society: 2003-2007 vol.29, pp.2, 2008, https://doi.org/10.5012/bkcs.2008.29.2.450
  8. Physical Chemistry Research Articles Published in the Bulletin of the Korean Chemical Society: 2003-2007 vol.29, pp.2, 2008, https://doi.org/10.5012/bkcs.2008.29.2.450
  9. Preparation of c-Axis Oriented La2CuO4 Thin Films on the Si Substrate by Pulsed Laser Deposition vol.29, pp.3, 2007, https://doi.org/10.5012/bkcs.2008.29.3.685
  10. Influence of Crystal Structure on the Chemical Bonding Nature and Photocatalytic Activity of Hexagonal and Cubic Perovskite Compounds vol.29, pp.4, 2007, https://doi.org/10.5012/bkcs.2008.29.4.817
  11. Au nanoparticles doped ZrTiO4 films and hydrogen gas induced Au-plasmon shifting vol.20, pp.41, 2007, https://doi.org/10.1039/c0jm00675k
  12. Oxide-Clay Mineral as Photoactive Material for Dye Discoloration vol.10, pp.2, 2020, https://doi.org/10.3390/min10020132