DOI QR코드

DOI QR Code

Site-directed Mutagenesis of Arginine 13 Residue in Human Glutathione S-Transferase P1-1

  • Koh, Jong-Uk (Department of Chemistry, College of Sciences, Chung-Ang University) ;
  • Cho, Hyun-Young (Department of Chemistry, College of Sciences, Chung-Ang University) ;
  • Kong, Kwang-Hoon (Department of Chemistry, College of Sciences, Chung-Ang University)
  • Published : 2007.05.20

Abstract

In order to study the role of residue in the active site of glutathione S-transferase (GST), Arg13 residue in human GST P1-1 was replaced with alanine, lysine and leucine by site-directed mutagenesis to obtain mutants R13A, R13K and R13L. These three mutant enzymes were expressed in Escherichia coli and purified to electrophoretic homogeneity by affinity chromatography on immobilized GSH. Mutation of Arg13 into Ala caused a substantial reduction of the specific activity by 10-fold. Km GSH, Km DCNB and Km EPNP values of R13A were approximately 2-3 fold larger than those of the wild type. Mutation of Arg13 into Ala also significantly affected I50 values of S-methyl-GSH that compete with GSH and ethacrynic acid, an electrophilic substrate-like compound. These results appeared that the substitution of Arg13 with Ala resulted in significant structural change of the active site. Mutation of Arg13 into Leu reduced the catalytic activity by approximately 2-fold, whereas substitution by Lys scarcely affected the activity, indicating the significance of a positively charged residue at position 13. Therefore, arginine 13 participates in catalytic activity as mainly involved in the construction of the proper electrostatic field and conformation of the active site in human GST P1-1.

Keywords

References

  1. Mannervik, B. Adv. Enzymol. Rel. Areas Mol. Biol. 1985, 57, 357 https://doi.org/10.1002/9780470123034.ch5
  2. Mannervik, B.; Danielson, U. H. CRC Crit. Rev. Biochem. 1988, 23, 283 https://doi.org/10.3109/10409238809088226
  3. Fahey, R. C.; Sundquist, A. R. Adv. Enzymol. Rel. Areas Mol. Biol. 1991, 64, 1 https://doi.org/10.1002/9780470123102.ch1
  4. Mannervik, B.; Awasthi, Y. C.; Board, P. G.; Hayes, J. D.; Ilio, C.; Ketterer, B.; Listowsky, I.; Morgenstern, R.; Muramatsu, M.; Pearson, W. R.; Pickett, C. B.; Sato, K.; Widersten, M.; Wolf, C. R. Biochem. J. 1992, 282, 305
  5. Morgan, A. S.; Ciaccio, P. J.; Tew, K. D.; Kauvar, L. M. Cancer Chemother. Pharmacol. 1996, 37, 363 https://doi.org/10.1007/s002800050398
  6. Tsuchida, S.; Sato, K. CRC Crit. Rev. Biochem. Mol. Biol. 1992, 27, 337 https://doi.org/10.3109/10409239209082566
  7. Zhang, P.; Graminski, G. F.; Armstrong, R. N. J. Biol. Chem. 1991, 266, 19475
  8. Kong, K.-H.; Nishida, M.; Inoue, H.; Takahashi, K. Biochem. Biophys. Res. Commun. 1992, 182, 1122
  9. Kong, K.-H.; Takasu, K.; Inoue, H.; Takahashi, K. Biochem. Biophys. Res. Commun. 1992, 184, 194
  10. Kong, K.-H.; Inoue, H.; Takahashi, K. Biochem. Biophys. Res. Commun. 1991, 181, 748
  11. Asaoka, K.; Takahashi, K. J. Enzyme Inhibit. 1989, 2, 77
  12. Andersson, C. B.; Morgenstern, R. Biochem. J. 1990, 272, 479
  13. Reinemer, P.; Dirr, H. W.; Ladenstein, R.; Schaffer, J.; Gallay, O.; Huber, R. EMBO J. 1991, 10, 1997
  14. Reinemer, P.; Dirr, H. W.; Ladenstein, R.; Huber, R. J. Mol. Biol. 1992, 217, 214
  15. Oakley, A. J.; Rossjohn, J.; Bello, M. L.; Caccuri, A. M.; Federici, G.; Paker, M. W. Biochemistry 1997, 36, 576 https://doi.org/10.1021/bi962316i
  16. Kano, T.; Sakai, M.; Muramatsu, M. Cancer Res. 1987, 47, 5626
  17. Kunkel, T. A. Proc. Natl. Acad. Sci. USA 1985, 82, 488
  18. Park, H. J.; Koh, J. U.; Ahn, S. Y.; Kong, K. H. Bull. Korean Chem. Soc. 2005, 26, 433 https://doi.org/10.5012/bkcs.2005.26.3.433
  19. Parker, M. W.; Bello, M. L.; Federici, G. J. Mol. Biol. 1990, 213, 221 https://doi.org/10.1016/S0022-2836(05)80183-4
  20. Habig, W. H.; Jakoby, W. B. Methods Enzymol. 1981, 77, 398 https://doi.org/10.1016/S0076-6879(81)77053-8
  21. Chen, W.-L.; Haieh, J.-C.; Hong, J.-L.; Tsai, S.-P.; Tam, M. F. Biochem. J. 1992, 286, 205
  22. Kong, K.-H.; Inoue, H.; Takahashi, K. J. Biochem. 1992, 112, 725
  23. Tellez-Sanz, R.; Cesareo, E.; Nuccetelli, M.; Aguilera, A. M.; Baron, C.; Parker, L. J.; Adams, J. J.; Morton, C. J.; Lo Bello, M.; Parker, M. W.; Garcia-Fuentes, L. Protein Sci. 2006, 15, 1093 https://doi.org/10.1110/ps.052055206

Cited by

  1. Mutagenesis of Critical Amino Acid Residues in α-Helix and β-Sheet Structures of Brazzein vol.32, pp.11, 2011, https://doi.org/10.5012/bkcs.2011.32.11.4106
  2. Engineering High Catalytic Efficiency of the Steroid Isomerase Activity of Human Glutathione S-transferase P1-1 vol.34, pp.2, 2013, https://doi.org/10.5012/bkcs.2013.34.2.645
  3. Characterization of Two Naturally Occurring Mutations Close to Cofactors in Human Dihydrolipoamide Dehydrogenase vol.29, pp.12, 2008, https://doi.org/10.5012/bkcs.2008.29.12.2327
  4. In vitro Regulation of Activation with Human Telomerase Reverse Transcriptase Components Expressed in Escherichia coli and Human Telomerase RNA Component vol.29, pp.8, 2007, https://doi.org/10.5012/bkcs.2008.29.8.1633
  5. Characterization of Two Site-Specific Human Cytosolic Thioredoxin Mutants (Pro-34 to Ala and Val) vol.30, pp.12, 2007, https://doi.org/10.5012/bkcs.2009.30.12.2869
  6. Characterization of a Naturally Occurring Mutation (Ile-12 to Thr) Close to Prosthetic Group FAD in Human Dihydrolipoamide Dehydrogenase vol.30, pp.4, 2007, https://doi.org/10.5012/bkcs.2009.30.4.777
  7. Immobilization of Hansenula polymorpha Alcohol Oxidase for Alcohol Biosensor Applications vol.30, pp.1, 2009, https://doi.org/10.5012/bkcs.2009.30.1.057
  8. Characterization of Two Site-specifically Mutated Human Dihydrolipoamide Dehydrogenase (Leu-46 to Ala and Pro-52 to Val) vol.30, pp.9, 2009, https://doi.org/10.5012/bkcs.2009.30.9.2121
  9. Characterization of Human Cytosolic Thioredoxin Reductase by Site-specific Mutagenesis vol.31, pp.12, 2010, https://doi.org/10.5012/bkcs.2010.31.12.3515
  10. Design and Efficient Soluble Expression of a Sweet Protein, Brazzein and Minor-Form Mutant vol.31, pp.12, 2010, https://doi.org/10.5012/bkcs.2010.31.12.3830
  11. Contribution of Arginine 13 to the Catalytic Activity of Human Class Pi Glutathione Transferase P1-1 vol.31, pp.9, 2007, https://doi.org/10.5012/bkcs.2010.31.9.2497