DOI QR코드

DOI QR Code

Ferroelectric and Antiferroelectric Behavior in Chiral Bent-shaped Molecules with an Asymmetric Central Naphthalene Core

  • Lee, Seng-Kue (Department of Organic and Polymeric Materials, Tokyo Institute of Technology) ;
  • Tokita, Masatoshi (Department of Organic and Polymeric Materials, Tokyo Institute of Technology) ;
  • Shimbo, Yoshio (Department of Organic and Polymeric Materials, Tokyo Institute of Technology) ;
  • Kang, Kyung-Tae (Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University) ;
  • Takezoe, Hideo (Department of Organic and Polymeric Materials, Tokyo Institute of Technology) ;
  • Watanabe, Junji (Department of Organic and Polymeric Materials, Tokyo Institute of Technology)
  • Published : 2007.12.20

Abstract

A new series of chiral bent-shaped liquid crystals with an asymmetric central core based on 1,6- dihydroxynaphthalene and chiral terminal chain prepared from (S)-(?)-2-methyl-1-butanol, 1,6-naphthalene bis[4-(4-alkoxyphenyliminomethyl)]benzoates [N(1,6)-n-O-PIMB(n-2)*-(n-4)O (n = 8-11)] were synthesized. Their mesomorphic properties and phase structures were investigated by means of electro-optical, polarization reversal current, and second harmonic generation measurements in order to confirm the relationship between the molecular structure and phase structure. All odd n (n = 9 and 11) compounds, N(1,6)-9-O-PIMB7*-5O and N(1,6)-11-O-PIMB9*-7O exhibit antiferroelectric phase, whereas even n (n = 8 and 10) compounds was flexible, N(1,6)-10-O-PIMB8*-6O exhibits the ferroelectric phase but N(1,6)-8-O-PIMB6*-4O exhibits the antiferroelectric phase. These results come from the decrease of the closed packing efficiency within a layer and the lack of uniform interlayer interaction between adjacent layers, which were caused by the asymmetrical naphthalene central core. Thus, we concluded that the structure of central core as well as the terminal chain plays an important role for the emergence of particular polar ordering in phase structures.

Keywords

References

  1. Mayer, R. B.; Liebert, L.; Strzelecki, L.; Keller, P. J. Phys. (Fr) Lett. 1975, 36, L69 https://doi.org/10.1051/jphyslet:0197500360306900
  2. Chandani, A. D. L.; Gorecka, E.; Ouchi, Y.; Takezoe, H.; Hukuda, A. Jpn. J. Appl. Phys. 1989, 28, L1265 https://doi.org/10.1143/JJAP.28.L1265
  3. Niori, T.; Sekine, T.; Watanabe, J.; Furukawa, T.; Takezoe, H. J. Mater. Chem. 1996, 6, 1231 https://doi.org/10.1039/jm9960601231
  4. Takezoe, H.; Takanishi, Y. Jpn. J. Appl. Phys. 2006, 45, 597 https://doi.org/10.1143/JJAP.45.597
  5. Pelzl, G.; Schroeder, M.; Dunemann, U.; Diele, S.; Weissflog, W.; Jones, C.; Colemann, D.; Clack, N.; Stannarius, R.; Li, J.; Das, B.; Grande, S. J. Mater. Chem. 2004, 14, 2492 https://doi.org/10.1039/b316892a
  6. Nakata, M.; Link, D. R.; Thisayukta, J.; Takanishi, Y.; Ishikawa, K.; Watanabe, J.; Takezoe, H. J. Mater. Chem. 2001, 11, 2694 https://doi.org/10.1039/b103506c
  7. Niwano, H.; Nakata, M.; Thisayukta, J.; Link, D. R.; Takezoe, H.; Watanabe, J. J. Am. Chem. Soc. 2004, 108, 14889
  8. Thisayukta, J.; Niwano, H.; Takezoe, H.; Watanabe, J. J. Am. Chem. Soc. 2002, 124, 3354 https://doi.org/10.1021/ja0123249
  9. Thisayukta, J.; Niwano, H.; Takezoe, H.; Watanabe, J. J. Mater. Chem. 2001, 11, 2717 https://doi.org/10.1039/b104029b
  10. Nakata, M.; Link, D. R.; Araoka, F.; Thisayukta, J.; Takanish, Y.; Ishikawa, K.; Watanabe, J.; Takezoe, H. Liq. Cryst. 2001, 28, 1301 https://doi.org/10.1080/02678290110048741
  11. Nakata, M.; Link, D. R.; Takanish, Y.; Takahashi, Y.; Thisayukta, J.; Niwano, H.; Coleman, D. A.; Watanabe, J.; Lida, A.; Clark, N. A.; Takezoe, H. Phys. Rev. E 2005, 71, 011705 https://doi.org/10.1103/PhysRevE.71.011705
  12. Lee, S. K.; Park, C. W.; Lee, J. G.; Kang, K.-T.; Nishida, K.; Shimbo, Y.; Takanishi, Y.; Takezoe, H. Liq. Cryst. 2005, 32, 1205 https://doi.org/10.1080/02678290500303056
  13. Link, D. R.; Natale, G.; Shao, R.; Maclennan, J. E.; Clark, N. A.; Korblova, E.; Walba, D. M. Science 1997, 278, 1924 https://doi.org/10.1126/science.278.5345.1924
  14. Walba, D. M.; Korblova, E.; Shao, R.; Maclennan, J. E.; Link, D. R.; Glaser, M. A.; Clark, N. A. Science 2000, 288, 2181 https://doi.org/10.1126/science.288.5474.2181
  15. Niori, T.; Yamamoto, J.; Yokoyama, H. Mol. Cryst. Liq. Cryst. 2004, 411, 1325
  16. Olson, D. A.; Veun, M.; Cady, A.; D'agostino, M. V.; Johnson, P. M.; Nguyen, H. T.; Chen, L. C.; Huang, C. C. Phys. Rev. E 2001, 63, 041702 https://doi.org/10.1103/PhysRevE.63.041702
  17. Keith, C.; Reddy, R. A.; Hahn, H.; Lang, H.; Schierske, C. Chem. Commun. 2004, 25, 1898
  18. Dantgraber, G.; Eremin, A.; Diele, S.; Hauser, A.; Kresse, H.; Pelzl, G.; Tschierske, C. Angew. Chem., Int. Ed. 2002, 41, 2408 https://doi.org/10.1002/1521-3773(20020703)41:13<2408::AID-ANIE2408>3.0.CO;2-M
  19. Nadasi, H.; Weissflog, W.; Eremin, A.; Pelzl, G.; Diele, S.; Das, B.; Grande, S. J. Mater. Chem. 2002, 12, 1316 https://doi.org/10.1039/b111421b
  20. Bedel, J. P.; Rouillon, J. C.; Maroerou, J. P.; Lauerre, M.; Nguyen, H. T.; Achard, M. F. Liq. Cryst. 2000, 27, 103 https://doi.org/10.1080/026782900203272
  21. Bedel, J. P.; Rouillon, J. C.; Maroerou, J. P.; Lauerre, M.; Nguyen, H. T.; Achard, M. F. Liq. Cryst. 2001, 28, 1285 https://doi.org/10.1080/02678290110039949
  22. Reddy, R. A.; Sadashiva, B. K. J. Mater. Chem. 2002, 12, 2627 https://doi.org/10.1039/b204474a
  23. Reddy, R. A.; Schroder, M. W.; Boddyagin, M.; Kresse, H.; Diele, S.; Pezel, G.; Weissflog, W. Angew. Chem., Int. Ed. 2005, 44, 774 https://doi.org/10.1002/anie.200461490
  24. Reddy, R. A.; Sadashiva, B. K. J. Mater. Chem. 2004, 14, 1936 https://doi.org/10.1039/b313295a
  25. Kumazawa, K.; Nakada, M.; Araoka, F.; Takanishi, Y.; Ishikawa, K.; Watanabe, J.; Takezoe, H. J. Mater. Chem. 2004, 14, 157 https://doi.org/10.1039/b310709d
  26. Lee, S. K.; Heo, S.; Lee, J. G.; Kang, K.-T.; Kumazawa, K.; Nishida, K.; Shimbo, Y.; Takanishi, Y.; Watanabe, J.; Doi, T.; Takahashi, T.; Takezoe, H. J. Am. Chem. Soc. 2005, 127, 11085 https://doi.org/10.1021/ja052315q
  27. Nishida, K.; Kim, W. J.; Lee, S. K.; Heo, S.; Lee, J. G.; Kang, K.- T.; Takanishi, Y.; Ishikawa, K.; Watanabe, J.; Takezoe, H. Jpn. J. Appl. Phys. 2006, 45, L329 https://doi.org/10.1143/JJAP.45.L329
  28. Lee, S. K.; Naito, Y.; Shi, L.; Tokita, M.; Takezoe, H.; Watanabe, J. Liq. Cryst. 2007, 34, 935 https://doi.org/10.1080/02678290701541538
  29. Zennyoji, M.; Takanishi, Y.; Ishikawa, K.; Thisayukta, J.; Watanabe, J.; Takezoe, H. J. Mater. Chem. 1999, 9, 2775 https://doi.org/10.1039/a905360c
  30. Zennyoji, M.; Takanishi, Y.; Ishikawa, K.; Thisayukta, J.; Watanabe, J.; Takezoe, H. Jpn. J. Appl. Phys. 2000, 39, 3536 https://doi.org/10.1143/JJAP.39.3536
  31. Nishida, K.; Cepic, M.; Kim, W. J.; Lee, S. K.; Heo, S.; Lee, J. G.; Takanishi, Y.; Ishikawa, K.; Kang, K.-T.; Watanabe, J.; Takezoe, H. Phys. Rev. E 2006, 74, 021704 https://doi.org/10.1103/PhysRevE.74.021704

Cited by

  1. Synthesis and characterisation of unsymmetrical six-aromatic ring containing bent-shaped compounds vol.37, pp.10, 2010, https://doi.org/10.1080/02678292.2010.495793
  2. Synthesis and properties of new (−)-menthol-derived chiral liquid crystal compounds with alkyl or alkoxy terminal groups vol.44, pp.3, 2017, https://doi.org/10.1080/02678292.2016.1225843
  3. Synthesis and properties of (−)-menthol-derived chiral liquid crystals by introducing adipoyloxy spacer between mesogenic core and chiral menthyl vol.45, pp.10, 2018, https://doi.org/10.1080/02678292.2018.1453557
  4. On the supramolecular packing of bent-shaped molecules: the influence of the central bent-core on the liquid crystalline behaviour vol.33, pp.10, 2009, https://doi.org/10.1039/b9nj00230h
  5. Smectic A phase in a new bent-shaped mesogen based on a 2,3-naphthalene central core with an acute-subtended angle vol.20, pp.18, 2010, https://doi.org/10.1039/b919404e