DOI QR코드

DOI QR Code

Combined FTIR and Temperature Programmed Fischer-Tropsch Synthesis over Ru/SiO2 and Ru-Ag/SiO2 Supported Catalysts

  • Hussain, Syed T. (Department of Chemistry, Quaid-i-Azam University) ;
  • Nadeem, M. Arif (Department of Chemistry, Quaid-i-Azam University) ;
  • Mazhar, M. (Department of Chemistry, Quaid-i-Azam University) ;
  • Larachi, Faical (Department of Chemical Engineering, University of Laval)
  • Published : 2007.04.20

Abstract

Combined temperature programmed reaction (TPR) and infrared (IR) spectroscopic studies for Fischer- Tropsch reaction have been performed over Ru/SiO2 and Ru-Ag/SiO2 supported catalysts. Reaction of linearly absorbed CO with hydrogen starts at 375 K over Ru/SiO2 catalyst and reaches maximum at 420 K accompanied with an intensity decrease of linear CO absorption. The reaction with bridged absorbed CO peaks around 510-535 K. Addition of Ag yields mixed Ru-Ag bimetallic sites while it suppresses the formation of bridged bonded CO. Formation of methane on this modified surface occurs at 390 K and reaches maximum at 444 K. Suppression of hydrogen on the Ag-doped surface also occurs resulting in the formation of unsaturated hydrocarbons and of CHx intermediates not observed with Ru/SiO2 catalyst. Such intermediates are believed to be the building blocks of higher hydrocarbons during the Fischer-Tropsch synthesis. Linearly absorbed CO is found to be more reactive as compared to bridged CO. The Ag-modified surface also produces CO2 and carbon. On this surface, hydrogenation of CO begins at 390 K and reaches maximum at 494 K. The high temperature for hydrogenation of absorbed CO and C over Ru-Ag/SiO2 catalyst as compared to Ru/SiO2 catalyst is due to the formation of Ru-Ag bimetallic surfaces impeding hydrogen adsorption.

Keywords

References

  1. Wilson, T. P.; Kasai, P. H.; Ellgen, P. C. J. Catal. 1981, 69, 193 https://doi.org/10.1016/0021-9517(81)90141-X
  2. Katzer, J. R.; Sleight, A. W.; Gajarsdo, P.; Michel, J. B.; Gleason, E. F.; McMillian, S. Faraday Discuss. Chem. Soc. 1991, 72, 282
  3. Watson, P. R.; Somorjai, G. A. J. Catal. 1981, 74, 282
  4. Worley, S. D.; Rice, C. A.; Mattson, G. A.; Curtis, C. W.; Guin, J. A.; Tarrer, A. R. J. Chem. Phys. 1982, 76, 20 https://doi.org/10.1063/1.442760
  5. Yates, J. T.; Duncan, T. M.; Worley, S. D.; Vaughan, R. W. J. Chem. Phys. 1979, 70, 1219 https://doi.org/10.1063/1.437603
  6. Solymosi, F.; Pasztor, M. J. Phys. Chem. 1986, 90, 5312 https://doi.org/10.1021/j100412a081
  7. Chaung, S. S. C.; Pien, S. I. J. Catal. 1992, 138, 536 https://doi.org/10.1016/0021-9517(92)90305-2
  8. Underwood, R. P.; Bell, A. T. J. Catal. 1988, 111, 325 https://doi.org/10.1016/0021-9517(88)90091-7
  9. Chaung, S. S. C.; Pien, S. I.; Narayanan, R. Appl. Catal. 1990, 5, 241
  10. Van den Berg, F. G. A.; Glezer, J. H. E.; Sachtler, W. M. H. J. Catal. 1985, 93, 340 https://doi.org/10.1016/0021-9517(85)90181-2
  11. Chaung, S. S. C.; Goodwin, J. G., Jr.; Wender, I. J. Catal. 1985, 95, 435 https://doi.org/10.1016/0021-9517(85)90121-6
  12. Bond, G. C.; Richards, D. G. Appl. Catal. 1986, 28, 303 https://doi.org/10.1016/S0166-9834(00)82513-0
  13. Kowalski, J.; Van der Lee, G.; Ponec, V. Appl. Catal. 1985, 19, 423 https://doi.org/10.1016/S0166-9834(00)81764-9
  14. Gysling, H. J.; Monnier, J. R.; Apai, G. J. Catal. 1987, 103, 407 https://doi.org/10.1016/0021-9517(87)90132-1
  15. Ichikawa, M.; Fukushima, T. J. Phys. Chem. 1985, 89, 1564 https://doi.org/10.1021/j100255a003
  16. Mori, Y.; Mori, T.; Miyamoto, A.; Takahashi, N.; Hattori, N. T.; Murakami, Y. J. Phys. Chem. 1989, 93, 2039 https://doi.org/10.1021/j100342a065
  17. Mori, T.; Miyamoto, A.; Niizuma, H.; Takahashi, N.; Hattori, T.; Murakami, T. J. Phys. Chem. 1986, 90, 109 https://doi.org/10.1021/j100273a025
  18. Fujimoto, K.; Kameyama, M.; Kunugi, T. J. Catal. 1980, 61, 7 https://doi.org/10.1016/0021-9517(80)90333-4
  19. Solymosi, F.; Tombacz, I.; Kocsis, M. J. Catal. 1982, 75, 78 https://doi.org/10.1016/0021-9517(82)90123-3
  20. Koel, B. E.; Somorjai, G. A. In Catalysis Sci. and Tech.; Anderson, J. R., Boudart, M., Eds.; Spring-Verlag: Berlin, 1985; Vol. 7, p 159
  21. Tang, S. L.; Lee, M. B.; Yang, Q. Y.; Beckerle, S. T.; Ceyer, S. T. J. Chem. Phys. 1986, 84, 1876 https://doi.org/10.1063/1.450435
  22. Solymosi, F.; Bansagi, T.; Novak, E. J. Catal. 1988, 112, 34 https://doi.org/10.1016/0021-9517(88)90118-2

Cited by

  1. Silicon–nickel intermetallic compounds supported on silica as a highly efficient catalyst for CO methanation vol.4, pp.1, 2014, https://doi.org/10.1039/C3CY00743J
  2. Catalytic Effects and Characteristics of Ni-based Catalysts Supported on TiO2-SiO2 Xerogel vol.28, pp.12, 2007, https://doi.org/10.5012/bkcs.2007.28.12.2288