DOI QR코드

DOI QR Code

Cu(II) Complexes Conjugated with 9-Aminoacridine Intercalator: Their Binding Modes to DNA and Activities as Chemical Nuclease

  • Published : 2007.02.20

Abstract

New mono- and bis-Cu(II)-triazacyclononane(tacn) complex that conjugated with 9-aminoacridine were synthesized, and their binding modes and DNA cleavage activity were investigated in this study. When the classic intercalator, 9-aminoacridine, was conjugated to mono- and bis-Cu(II)-tacn complexes, a significant red-shift and hypochromism in absorption spectrum was apparent in the acridine absorption region upon binding to DNA. Furthermore, the magnitude of the negative reduced linear dichroism signal in the substrate absorption region appeared to be larger than that in the DNA absorption region. These spectral observations indicated that the acridine moiety intercalated when the Cu(II)-tacn complex was conjugated. In contrast, from a close analysis of the circular and linear dichroism spectrum, the aminoacridine-free bis-Cu(II)-tacn complex was concluded to bind at the phosphate groups of DNA. The 9-aminoacridine-free-bis-Cu(II)-tacn complex produces the nicked and linear DNA. On the other hand, 9-aminoacridine conjugated mono-and bis-Cu(II)-tacn complexes showed unspecific binding with negligible DNA cleavage.

Keywords

References

  1. Metal Ions in Biological System; Sigel, A.; Sigel, H., Eds.; Macel Dekker; New York, 1996
  2. Pratvicl, G.; Bernadou, J.; Mcunicr, B. Adv. Inorg. Chem. 1998, 45, 251 https://doi.org/10.1016/S0898-8838(08)60027-6
  3. Ji, L.-N.; Zou, X.-H.; Liu, J.-G. Coord. Chem. Rev. 2001, 216-217, 143
  4. Cowan, J. A. Curr. Opin. Chem. Biol. 2001, 5, 634 https://doi.org/10.1016/S1367-5931(01)00259-9
  5. Sigman, D. S.; Graham, D. R.; Aurora, V. D.; Stern, A. M. J. Biol. Chem. 1979, 254, 12269
  6. Detmer III, C. A.; Pamatong, F. V.; Bocarsly, J. R. Inorg. Chem. 1997, 36, 3676 https://doi.org/10.1021/ic970199p
  7. Ahsan, H.; Hadi, S. M. Cancer Lett. 1998, 124, 23 https://doi.org/10.1016/S0304-3835(97)00442-4
  8. Liu, J.; Zhang, T.; Lu, T.; Qu, L.; Zhou, H.; Zhang, Q.; Ji, L. J. Inorg. Biochem. 2002, 91, 269 https://doi.org/10.1016/S0162-0134(02)00441-5
  9. Vaidyanathen, V. G.; Nair, B. U. J. Inorg. Biochem. 2003, 93, 271 https://doi.org/10.1016/S0162-0134(02)00593-7
  10. Benites, P. J.; Holmberg, R. C.; Rawat, D. S.; Kraft, B. J.; Klein, L. J.; Peters, D. G.; Thorp, H. H.; Zaleski, J. M. J. Am. Chem. Soc. 2003, 125, 6434 https://doi.org/10.1021/ja020939f
  11. Gonzalez-Alvarez, M.; Alzuet, G.; Borras, J.; Pitie, M.; Meunier, B. J. Biol. Inorg. Chem. 2003, 8, 644 https://doi.org/10.1007/s00775-003-0463-6
  12. Wang, X.-L.; Chao, H.; Li, H.; Hong, X.-L.; Ji, L.-N.; Li, X.-Y. J. Inorg. Biochem. 2004, 98, 423 https://doi.org/10.1016/j.jinorgbio.2003.12.006
  13. Thomas, A. M.; Nethaji, M.; Chakravarty, A. R. J. Inorg. Biochem. 2004, 98, 1087 https://doi.org/10.1016/j.jinorgbio.2004.02.029
  14. Reddy, P. R.; Rao, K. S.; Satyanarayana, B. Tetrahedron Lett. 2006, 47, 7311 https://doi.org/10.1016/j.tetlet.2006.08.033
  15. Hegg, E. L.; Burstyn, J. N. Inorg. Chem. 1996, 35, 7474 https://doi.org/10.1021/ic960384n
  16. Kim, J. H.; Kim, S. H. Chem. Lett. 2003, 32, 490 https://doi.org/10.1246/cl.2003.490
  17. Kim, J. H. Bull. Korean. Chem. Soc. 2004, 25, 410 https://doi.org/10.5012/bkcs.2004.25.3.410
  18. Hirohama, T.; Arii, H.; Chikira, M. J. Inorg. Biochem. 2004, 98, 1778 https://doi.org/10.1016/j.jinorgbio.2004.07.014
  19. Hansen, J. B.; Koch, T.; Buchardt, O.; Nielsen, P. E.; Wirth, M.; Norden, B. Biochemistry 1983, 22, 4878 https://doi.org/10.1021/bi00290a003
  20. Kim, H.-K.; Kim, J.-M.; Kim, S. K.; Rodger, A.; Norden, B. Biochemistry 1996, 35, 1187
  21. Kim, H.-K.; Cho, T.-S.; Kim, S. K. Bull. Korean. Chem. Soc. 1996, 17, 358
  22. Benesi, H. A.; Hildebrand, J. H. J. Am. Chem. Soc. 1949, 71, 2703 https://doi.org/10.1021/ja01176a030
  23. Norden, B.; Rodger, A. Circular Dichroism and Linear Dichroism; Oxford University Press: London, UK, 1997
  24. Eimer, T.; Norden, B. Bioorg. Med. Chem. 1995, 3, 701 https://doi.org/10.1016/0968-0896(95)00061-K
  25. Hyun, H.-M.; Lee, G.-J.; Cho, T.-S.; Kim, S. K.; Yi, S. Y. Bull. Korean Chem. Soc. 1997, 18, 528

Cited by

  1. Use of UV-Vis Spectrometry to Gain Information on the Mode of Binding of Small Molecules to DNAs and RNAs vol.47, pp.4, 2012, https://doi.org/10.1080/05704928.2011.641044
  2. Phosphodiester Cleavage Properties of Copper(II) Complexes of 1,4,7-Triazacyclononane Ligands Bearing Single Alkyl Guanidine Pendants vol.51, pp.2, 2012, https://doi.org/10.1021/ic2019814
  3. Efficient DNA Cleavage by Acridine Conjugates of Mono- and Dinuclear Cu(II) Complexes vol.29, pp.9, 2008, https://doi.org/10.5012/bkcs.2008.29.9.1803
  4. Cu(II)-TACN complexes selectively induce antitumor activity in HepG-2 cells via DNA damage and mitochondrial-ROS-mediated apoptosis vol.49, pp.1, 2007, https://doi.org/10.1039/c9dt03641e