References
- Kodymova, J. Proc. SPIE 2005, 5958, 595818-1-11
- Yuryshev, N. N. Quantum Electron. 1996, 26, 567 https://doi.org/10.1070/QE1996v026n07ABEH000730
- Carrol, D. L.; Verdeyen, J. T.; King, D. M.; Zimmerman, J. W.; Laystrom, J. K.; Woodard, B. S.; Benavides, G. F.; Kittell, K.; Stafford, D. S.; Solomon, W. C. Appl. Phys. Lett. 2005, 86, 111104-1-3 https://doi.org/10.1063/1.1883317
- Belousov, V. P.; Belousova, I. M.; Grenishin, A. S.; Danilov, O. B.; Kiselev, V. M.; Kris'ko, A. V.; Mak, A. A.; Murav'eva, T. D.; Sosnov, V. N. Opt. and Spectr. 2003, 95, 888 https://doi.org/10.1134/1.1635472
- Prein, M.; Adam, W. Angew. Chem. Int. Ed. 1996, 35, 477 https://doi.org/10.1002/anie.199604771
- Shim, S. C.; Song, J. S. Bull. Korean Chem. Soc. 1984, 5, 265
- Ha, J. H.; Jung, G. Y.; Kim, M. S.; Lee, Y. H.; Shin, K.; Kim, Y. R. Bull. Korean Chem. Soc. 2001, 22, 63
- Ha, J. H.; Kim, M. S.; Park, Y. I.; Ryu, S.; Park, M.; Shin, K.; Kim, Y. R. Bull. Korean Chem. Soc. 2002, 23, 281 https://doi.org/10.5012/bkcs.2002.23.2.281
- Park, Y. T.; Lee, S. W.; Song, M. S.; Bae, J. W.; Chung, M. S. Bull. Korean Chem. Soc. 1990, 11, 77
- Burrows, H. D.; Ernestova, L. S.; Kemp, T. J.; Skurlatov, Y. I.; Pyrmal, A. P.; Yermakov, A. N. Prog. React. Kinet. Mec. 1998, 23, 145
- Alfano, A. J.; Christe, K. O. Angew. Chem. Int. Ed. 2002, 41, 3252 https://doi.org/10.1002/1521-3773(20020902)41:17<3252::AID-ANIE3252>3.0.CO;2-G
- Alfano, A. J.; Christe, K. O. US Patent 6 623 718 B1, 2003
- Alfano, A. J.; Christe, K. O. USA AFRL report, AFRL-PR-EDTR- 2004-0411, 2004
- Khan, A. U.; Kasha, M. J. Am. Chem. Soc. 1970, 92, 3293 https://doi.org/10.1021/ja00714a010
- Li, Q. W.; Chen, F.; Zhao, W. L.; Duo, L. P.; Jin, Y. Q.; Sang, F. T. et al. High Power Laser and Particles Beam (Chinese) 2006, 18, 1761
- Jenny, T. A.; Turro, N. J. Tetrahedron Lett. 1982, 23, 2932
- Bromberg, A.; Foote, C. S. J. Phys. Chem. 1989, 93, 3968 https://doi.org/10.1021/j100347a020
- Schmidt, R. J. Phys. Chem. 1996, 100, 8049 https://doi.org/10.1021/jp960464c
- Kajiwara, T.; Kearns, D. R. J. Am. Chem. Soc. 1973, 95, 5886- 5890 https://doi.org/10.1021/ja00799a009
- Rogers, M. A. J.; Snowden, P. T. J. Am. Chem. Soc. 1982, 104, 5541 https://doi.org/10.1021/ja00384a070
- Hurst, J. R.; McDonald, J. D.; Schuster, G. B. J. Am. Chem. Soc. 1982, 104, 2065 https://doi.org/10.1021/ja00371a065
- Held, A. M.; Halko, D. J.; Hurst, J. K. J. Am. Chem. Soc. 1978, 100, 5732 https://doi.org/10.1021/ja00486a025
Cited by
- Batteries and Possible Origins vol.3, pp.20, 2012, https://doi.org/10.1021/jz301359t
- Mechanism and performance of lithium–oxygen batteries – a perspective vol.8, pp.10, 2017, https://doi.org/10.1039/C7SC02519J
- Understanding the Reaction Chemistry during Charging in Aprotic Lithium-Oxygen Batteries: Existing Problems and Solutions pp.09359648, 2019, https://doi.org/10.1002/adma.201804587
- Physical Chemistry Research Articles Published in the Bulletin of the Korean Chemical Society: 2003-2007 vol.29, pp.2, 2008, https://doi.org/10.5012/bkcs.2008.29.2.450
- Singlet Oxygen Formation during the Charging Process of an Aprotic Lithium–Oxygen Battery vol.128, pp.24, 2007, https://doi.org/10.1002/ange.201602142
- Singlet Oxygen Formation during the Charging Process of an Aprotic Lithium–Oxygen Battery vol.55, pp.24, 2007, https://doi.org/10.1002/anie.201602142
- Singlet oxygen generation as a major cause for parasitic reactions during cycling of aprotic lithium–oxygen batteries vol.2, pp.5, 2007, https://doi.org/10.1038/nenergy.2017.36
- Lithium-Oxygen Batteries and Related Systems: Potential, Status, and Future vol.120, pp.14, 2007, https://doi.org/10.1021/acs.chemrev.9b00609
- Mechanism of mediated alkali peroxide oxidation and triplet versus singlet oxygen formation vol.13, pp.5, 2021, https://doi.org/10.1038/s41557-021-00643-z
- Singlet Oxygen in Electrochemical Cells: A Critical Review of Literature and Theory vol.121, pp.20, 2021, https://doi.org/10.1021/acs.chemrev.1c00139