DOI QR코드

DOI QR Code

High-Resolution Fluorescence Near-Field Imaging of Individual Nanoparticles via the Tip-Induced Quenching Technique

  • Park, Won-Hwa (Department of Chemistry and Center for Photo- and Electro-Responsive Molecules, Korea University) ;
  • Kim, Zee-Hwan (Department of Chemistry and Center for Photo- and Electro-Responsive Molecules, Korea University)
  • Published : 2007.12.20

Abstract

We demonstrate that high-resolution (~60 nm) near-field fluorescence images of fluorescent nanospheres can be obtained by utilizing the tip-induced fluorescence quenching process. A time-stamped photon counting (TSPC) technique employed enables us to efficiently measure the degree of fluorescence quenching caused by the dielectric or metallic atomic force microscopy tip. We find that the degree of quenching is not only determined by the tip-material but also by the local morphology of the tip. The fringe patterns around individual nanospheres observed are explained in terms of the interference between the excitation field that is directly induced by the laser source, and the scattered excitation field from the tip.

Keywords

References

  1. Moerner, W. E.; Orrit, M. Science 1999, 283(5408), 1670 https://doi.org/10.1126/science.283.5408.1670
  2. Paesler, M. A.; Moyer, P. J. NEAR-FIELD OPTICS: THEORY, INSTRUMENTATION, AND APPLICATION, 1st ed.; John Wiley & Sons: New York, 1996
  3. Ziyang, M.; Jordan, M. G.; Lawrence, A. W.; Stephen, R. Q. Phys. Rev. Lett. 2006, 97(26), 260801 https://doi.org/10.1103/PhysRevLett.97.260801
  4. Sergei, K.; Ulf, H.; Lavinia, R.; Vahid, S. Phys. Rev. Lett. 2006, 97(1), 017402 https://doi.org/10.1103/PhysRevLett.97.017402
  5. Sanchez, E. J.; Novotny, L.; Xie, X. S. Phys. Rev. Lett. 1999, 82(20), 4014 https://doi.org/10.1103/PhysRevLett.82.4014
  6. Pascal, A.; Palash, B.; Lukas, N. Phys. Rev. Lett. 2006, 96(11), 113002 https://doi.org/10.1103/PhysRevLett.96.113002
  7. Kramer, A.; Trabesinger, W.; Hecht, B.; Wild, U. P. Appl. Phys. Lett. 2002, 80(9), 1652 https://doi.org/10.1063/1.1453479
  8. Jordan, M. G.; Lawrence, A. W.; Guillaume, A. L.; Ma, Z.; Stephen, R. Q. Phys. Rev. Lett. 2004, 93(18), 180801 https://doi.org/10.1103/PhysRevLett.93.180801
  9. Stockle, R. M.; Suh, Y. D.; Deckert, V.; Zenobi, R. Chem. Phys. Lett. 2000, 318(1-3), 131 https://doi.org/10.1016/S0009-2614(99)01446-3
  10. Anderson, N.; Hartschuh, A.; Cronin, S.; Novotny, L. J. Am. Chem. Soc. 2005, 127(8), 2533 https://doi.org/10.1021/ja045190i
  11. Knoll, B.; Keilmann, F. Opt. Commun. 2000, 182(4-6), 321
  12. Knoll, B.; Keilmann, F. Nature 1999, 399(6732), 134 https://doi.org/10.1038/20154
  13. Hillenbrand, R.; Keilmann, F. Phys. Rev. Lett. 2000, 85(14), 3029 https://doi.org/10.1103/PhysRevLett.85.3029
  14. Ohtsu, M.; Kobayashi, K. Optical Near Fields; Springer-Verlag: Berlin, 2004
  15. Ebenstein, Y.; Yoskovitz, E.; Costi, R.; Aharoni, A.; Banin, U. J. Phys. Chem. A 2006, 110(27), 8297 https://doi.org/10.1021/jp056229o
  16. Hecht, B.; Bielefeldt, H.; Inouye, Y.; Pohl, D. W.; Novotny, L. J. Appl. Phys. 1997, 81(6), 2492 https://doi.org/10.1063/1.363956

Cited by

  1. Physical Chemistry Research Articles Published in the Bulletin of the Korean Chemical Society: 2003-2007 vol.29, pp.2, 2008, https://doi.org/10.5012/bkcs.2008.29.2.450